Page 432 - Book Hosokawa Nanoparticle Technology Handbook
P. 432
FUNDAMENTALS CH. 7 ENVIRONMENTAL AND SAFETY ISSUES WITH NANOPARTICLES
[3] G. Oberdörster, E. Oberdörster and J. Oberdörster: [26] A. Ogami, M. Hirohashi, Y. Nagafuchi, K. Kuroda:
Nano-toxicology: Environ. Health Perspect., 113, J. Aerosol Res., 20, 200–206 (2005) (in Japanese).
823–840 (2005). [27] IARC (International Agency for Research on Cancer):
[4] P. Biswas, C.Y. Wu: J. Air Waste Manage. Assoc., 55, Summaries & Evaluations – Nickel and Nickel
708–746 (2005). Compounds, Lyon, France, Vol. 49 (1990).
[5] A.D. Maynard, E.D. Kuempel: J. Nanoparticle Res., 7, [28] Q. Zhang, Y. Kusaka: Inhal. Toxicol., 12, 267–273
587–614 (2005). (2000).
[6] K. Thomas, P. Sayre: Toxicol. Sci., 87, 316–321 (2005). [29] Q. Zhang, Y. Kusaka and K. Donaldson: J. Occup.
[7] International Commission on Radiological Protection. Health, 42, 179–184 (2000).
Publication 66: Ann. ICRP 24, 1–300 (1994). [30] Q. Zhang, Y. Kusaka, X. Zhu, K. Sato, Y. Mo, T. Klutz
[8] J. Ferin, G. Oberdörster, S.C. Soderholm and R. Gelein: and K. Donaldson: J. Occup. Health, 45, 23–30 (2003).
J. Aerosol Med., 4(1), 57–68 (1991). [31] M. Takaya, T. Toya, A. Takata, N. Otaki, K. Yoshida
[9] Recommendation of Occupational Exposure Limits: and N. Kohyama: J. Aerosol Res., 20, 207–212 (2005)
J. Occup. Health, 48(4), 296 (2005). (in Japanese).
[10] Ministry of Health, Labor and Welfare, Japan. [32] A. Tanaka: J. Aerosol Res., 20, 213–218 (2005) (in
Notification 368, Working Environment Evaluation Japanese).
Standards (2004). [33] A. Tanaka, M. Hirata, M. Omura, N. Inoue, T. Ueno,
[11] G. Oberdörster, J. Ferin, R. Gelein, S.C. Soderholm, T. Homma, K. Sekizawa: J. Occup. Health, 44,
J. Finkelstein: Environ. Health Perspect., 97, 193–197 99–102. (2002)
(1992).
[12] K. Donaldson, X.Y. Li, W. MacNee: J. Aerosol Sci.,
7.3.3 Safety assessment for the nanoparticles
29, 553–560 (1998).
[13] K. Donaldson, C.-L. Tran: Inhal. Toxicol., 14, 5–27 We have been experiencing amazing progress of the
(2002). technology on the processing for the nanometer-sized
[14] A. Nemmar, M.F. Hoylaerts, P.H.M. Hoet, D. Dinsdale, materials. The applications cover even biomedical
T. Smith and H. Xu, J. Vermylen, B. Nemery: Am. engineering in addition to information technology,
material, environmental science, and energy produc-
J. Respir. Crit. Care Med., 166, 998–1004 (2002).
tion [1–5]. As the result, many kinds of new materi-
[15] A. Nemmar, M.F. Hoylaerts, P.H.M. Hoet, J. Vermylen
als have been designed, fabricated, and discarded.
and B. Nemery: Toxicol. Appl. Pharmacol., 186, 38–45
From now on, this movement will be accelerated and
(2003).
even more new functional materials will be distrib-
[16] G. Oberdörster Z. Sharp, V. Atudorei, A. Elder, uted in the world. Here, we should not forget the
R. Gelein and W. Kreyling, C. Cox: Inhal. Toxicol., safety of those materials in the process of the pro-
16(6/7), 437–445 (2004). duction, usage, and discard. Without this safety
[17] S. Yamago, H. Tokuyama, E. Nakamura, K. Kikuchi, assessment, we will go into the same problems as that
S. Kananishi, K. Sueki, H. Nakahara, S. Enomoto, of asbestos just we are facing now. First of all, we
F. Ambe: Chem. Biol., 2, 385–389 (1995). have to conduct experiments to reveal the minimal
concentration for emergence of the toxicity. In other
[18] Y. Ishihara, R. Sakata and Y. Fujita: J. Aerosol Res.,
words, we have to fix the standard value for the
20, 193–199 (2005) (in Japanese).
threshold concentration for each material first of all.
[19] C.W. Lam, J.T. James, R. McCluskey, R.L. Hunter:
If we do not fix it, we should not use the material at
Toxicol. Sci., 77, 126–134 (2004).
any concentration, which means any engineering
[20] D.B. Warheit, B.R. Laurence, K.L. Reed, D.H. Roach, process could not be carried out. The applications in
G.A.M. Reynolds, T.R. Webb: Toxicol. Sci., 77, the various fields have started all over the world, and
117–125 (2004). the safety assessment is urgently needed. In this arti-
[21] WHO: Environmental Health Series 4. World Health cle, we introduce the methods of the safety assess-
Organization, Copenhagen (1985). ment of the semiconductor nanoparticles and
[22] IARC (International Agency for Research on Cancer): describe the safety and the threshold depending on
the surface treatment.
IARC Monogr. Eval. Carcinog. Risks Hum., 81, 1–418
The production process and the surface treatment
(2002).
play one of the most important roles for the safety of the
[23] J.H.E. Arts, S.M. Spoor, H. Muijser: Inhal. Toxicol.,
nanoparticles. Cd and Se semiconductor nanoparticles
12, 261–266 (2000).
coated with ZnS are one of the most widely used for
[24] G. Oberdörster, J. Ferin, J. Finkelstein, P. Wade and the strong intensity of the fluorescent activity. Cd
N. Corson: J. Aerosol Sci., 21, 384–387 (1990). oxide and Se compounds once dispersed in the
[25] G. Oberdörster: Philos. Trans. R. Soc. Lond. A, 358, tri-octhil-phosphine oxide (TOPO) heated up to 300 C
2719–2740 (2000). generate nanoparticles by self-assembly. Then ZnS
406

