Page 68 - Book Hosokawa Nanoparticle Technology Handbook
P. 68

1.13 OPTICAL PROPERTY OF NANOPARTICLE                                        FUNDAMENTALS
                                                                                 References
                       0                      10% Carbon-coated  [1] S. Chikazumi:  Jikken Butsurigaku Kouza 17, Jiki,
                    Timely change in saturation  magnetization (%)  -4  Standard iron metal particles  [2] S. Chikazumi, S. Miyahara, Y. Ishikawa, M. Asanuma,
                       -2
                                              iron metal particles
                                                                     Kyoritsu Shuppan (1968).
                                                                     N. Wakiyama, Y. Gondo and K. Ohta: Zairyou Kagaku
                       -6
                                                                     Kouza 5, Busshitsu no Jikitekiseishitsu, Asakura
                                                                     Shoten (1968).
                       -8
                                  humidity of 90% in air atmosphere
                                                                     Shoukabou (1956).
                      -10         measured at temperature of 60°C and relative   [3] K. Souda, S. Chikazumi: Daigaku Enshu, Denjikigaku,
                         0   50   100  150  200  250  300  350   [4] S. Chikanobu:  Kyoujiseitai no Butsuri, Shoukabou
                                    Exposured time (h)               (1959).
                                                                 [5] S. Chikanobu: Kotai Butsuri 1, 3, 3 (1966).
                  Figure 1.12.2                                  [6] H. Miwa, K. Yoshida: Prog. Theoret. Phys., 26, 693
                  Timely change in saturation magnetization on powder at  (1961).
                  temperature of 60 C and relative humidity of 90% in air  [7] T.A. Kaplan: Phys. Rev., 124, 329 (1961).
                  atmosphere.
                                                                 [8] R.J. Elliot: Phys. Rev., 124, 340 (1961).
                                                                  [9] K. Yoshida, A. Watanabe: Prog. Theoret. Phys., 28, 361
                                                                     (1962).
                                                                 [10] I. Dzialoshinski: J. Phys. Chem. Solids, 4, 241 (1958).
                    Differential thermal analysis ( V)   400  Standard iron metal particles  [13] F. Bertaut: CR Acad. Sci., 230, 213 (1950).
                                                                 [11] T. Moriya: Phys. Rev., 120, 91 (1960).
                    500
                                                                 [12] P. W. Anderson: Phys. Rev., 79, 350 (1950).
                               Ignition point
                                                                 [14] S. Miyahara, H. Ohnishi: J. Phys. Soc. Jpn., 11, 1296
                                       ( rapid oxidation )
                    300
                                                                     (1956).
                                                10% Carbon-coated
                                                                 [15] H. Ohnishi, T. Teranishi and S. Miyahara: J. Phys. Soc.
                    200
                                                iron metal particles
                                                                     Jpn., 14, 106 (1959).
                                                (gradual oxidation )
                    100
                                                                 [16] G. H. Jonker, J. H. van Santen: Physica, 16, 337 (1950).
                      0
                                        300
                       0
                            100
                                                                 [18] S. Geller, M. A. Gilleo:  Acta Crystallogr.,  10, 239
                                  200
                                    Temperature (˚C) 400  500  600  [17] F. Bertaut, F. Forrat: CR Acad. Sci., 242, 382 (1956).
                                                                     (1957).
                               Temp. grow rate  : 10 deg/min     [19] I. Dzialoshinski: J. Phys. Chem. Solids, 4, 241 (1958).
                               Air flow rate   : 200 ml/min
                                                                 [20] T. Moriya: Phys. Rev., 117, 635 (1960); 120, 91 (1960).
                                                                 [21] A. Yoshimori: J. Phys. Soc. Jpn., 14, 807 (1959).
                  Figure 1.12.3
                  Disappearance of ignition point by carbon coating  [22] T. Nagamiya: J. Phys. Radium, 20, 70 (1959).
                  measured by DTA.                               [23] H. Nishio, Y. Ota, M. Maekawa and H. Yamamoto:
                                                                     J. Magn. Magn. Mater., 287, 234–238 (2005).
                                                                 [24] K. Hayashi, K. Iwasaki,  Y.  Tanaka and H. Morii:
                                                                     Kagaku Kougaku Ronbunshu, 25 (3), 361–366 (1999).
                                                                 [25] K. Hayashi, M. Ohsugi, M. Kamigaki, B. Xia and
                  particles was very small. The oxidation of magnetism
                  was suppressed by the surface carbon coating.      K. Okuyama:  Electrochem. Solid-State Lett.,  5 (7),
                    Fig. 1.12.3 describes the differential thermal analy-  J9–J12 (2002).
                  sis (DTA) result of iron-based metal particles.
                  Uncoated metal particles had an ignition point of
                  about 180 C. For 10 wt% carbon-coated metal parti-  1.13 Optical property of nanoparticle
                  cle, the oxidation gradually occurred and there was no
                  ignition point. And then it became clear that carbon-  1.13.1 Band structure of nanoparticles
                  coated metal particles were chemically stable enough
                  compared to the uncoated metal particles.      Optical property of nanoparticle is greatly different
                    Serious problems caused by reducing the size of  according to whether the nanoparticle is insulator,
                  metal particles would be chemical and thermal stabil-  semiconductor or metal. Fig. 1.13.1 shows typical
                  ities. They will be cleared by both modification of  band structure model [1, 2]. In the insulator or the
                  composition and introduction of surface coatings  semiconductor, the valence band is completely occu-
                  such as carbon coating to commercialize nanosized  pied with the electron and the conduction band is
                  magnetic substances.                           emptied. Excitation of the electron is classified into
                                                                                                         45
   63   64   65   66   67   68   69   70   71   72   73