Page 142 - Nanotechnology an introduction
P. 142

Bibliography
  [1] Abad, E.; et al., NanoDictionary. (2005) Collegium Basilea, Basel.
  [2] Aggarwal, N.; et al., Protein adsorption on heterogeneous surfaces, Appl. Phys. Lett. 94 (2009) 083110.
  [3] Alexandre, S.; Lafontaine, C.; Valleton, J.-M., Local surface pressure gradients observed during the transfer of mixed behenic
      acid/pentadecanoic acid Langmuir films, J. Biol. Phys. Chem. 1 (2001) 21–23.
  [4] Allain, C.; Cloitre, M., Characterizing the lacunarity of random and deterministic fractal sets, Phys. Rev. A 44 (1991) 3552–3558.
  [5] Allen, P.M.; Ebeling, W., Evolution and the stochastic description of simple ecosystems, Biosystems 16 (1983) 113–126.
  [6] Amico, L.; et al., Entanglement in many-body systems, Rev. Mod. Phys. 80 (2008) 517–576.
  [7] Anderson, P.W., More is different, Science 177 (1972) 393–396.
  [8] Aref, A.; et al., Optical monitoring of stem cell-substratum interactions, J. Biomed. Opt. 14 (2009) 010501.
  [9] Arikawa, M., Fullerenes—an attractive nano carbon material and its production technology, Nanotechnol. Percept. 2 (2006); 121–114.
  [10] Ashby, R.W., Principles of the self-organizing system, In: (Editors: von Foerster, H.; Zopf, G.W.) Principles of Self-Organization (1962)
      Pergamon Press, Oxford, pp. 255–278.
  [11] Bafaluy, J.; et al., Effect of hydrodynamic interactions on the distribution of adhering Brownian particles, Phys. Rev. Lett. 70 (1993) 623–626.
  [12] Bandyopadhyay, S., Single spin devices—perpetuating Moore's law, Nanotechnol. Percept. 3 (2007) 159–163.
  [13] Banyai, L.; Koch, S.W., Absorption blue shift in laser-excited semiconductor microspheres, Phys. Rev. Lett. 57 (1986) 2722–2724.
  [14] Banzhaf, W.; et al., From artificial evolution to computational evolution, Nat Rev Genet 7 (2006) 729–735.
  [15] Berezin, A.A., Stable isotopes in nanotechnology, Nanotechnol. Percept. 5 (2009) 27–36.
  [16] Berry, C.R., Effects of crystal surface on the optical absorption edge of AgBr, Phys. Rev. 153 (1967) 989–992.
  [17] Berry, C.R., Structure and optical absorption of AgI microcrystals, Phys. Rev. 161 (1967) 848–851.
  [18] Bigelow, W.C.; et al., Oleophobic monolayers, J. Colloid Sci. 1 (1946) 513–538.
  [19] Bikerman, J.J., The criterion of fracture, SPE Trans. 4 (1964) 290–294.
  [20] Bikerman, J.J., Surface energy of solids, Phys. Stat. Sol. 10 (1965) 3–26.
  [21] Binnig, G.; Rohrer, H., Scanning tunneling microscopy, Helv. Phys. Acta 55 (1982) 726–735.
  [22] Binns, C., Prodding the cosmic fabric with nanotechnology, Nanotechnol. Percept. 3 (2007) 97–105.
  [23] Blumenfeld, L.A.; Burbajev, D.S.; Davydov, R.M., Processes of conformational relaxation in enzyme catalysis, In: (Editor: Welch, E.R.) The
      Fluctuating Enzyme (1986) Wiley, New York, pp. 369–402.
  [24] Boscovic, B.O., Carbon nanotubes and nanofibres, Nanotechnol. Percept. 3 (2007) 141–158.
  [25] Brintrup, A.M.; et al., Evaluation of sequential, multi-objective, and parallel interactive genetic algorithms for multi-objective optimization
      problems, J. Biol. Phys. Chem. 6 (2006) 137–146.
  [26] Bruinsma, R., Physical aspects of adhesion of leukocytes, In: (Editors: Riste, T.; Sherrington, D.) Physics of Biomaterials: Fluctuations, Self-
      Assembly and Evolution (1996) Kluwer, Dordrecht, pp. 61–101.
  [27] Brus, L.E., Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited
      electronic state, J. Chem. Phys. 18 (1984) 4403–4409.
  [28] Calis, M.; Desmulliez, M.P.Y., Haptic sensing technologies for a novel design methodology in micro/nanotechnology, Nanotechnol. Percept. 1
      (2007) 141–158.
  [29] Calonder, C.; Talbot, J.; Ramsden, J.J., Mapping the electron donor/acceptor potentials on protein surfaces, J. Phys. Chem. B 105 (2001)
      725–729.
  [30] Carturan, G.; et al., Inorganic gels for immobilization of biocatalysts: inclusion of invertase-active whole cells of yeast (Saccharomyces
      cerevisiae) into thin layers of SiO  gel deposited on glass sheets, J. Molec. Catal. 57 (1989) L13–L16.
                                 2
  [31] Catalan, G.; Schilling, A.; Scott, J.F.; Gregg, J.M., Domains in three-dimensional ferroelectric nanostructures: theory and experiment, J. Phys.:
      Cond. Matter 19 (2007) 132–201.
  [32] Cavin, R.K.; Zhirnov, V.V., Generic device abstractions for information processing technologies, Solid State Electron 50 (2006) 520–526.
  [33] Chumakov, S.; et al., The theoretical basis of universal identification systems for bacteria and viruses, J. Biol. Phys. Chem. 5 (2005) 121–128.
  [34] Claridge, S.A.; et al., Cluster-assembled materials, ACS Nano 3 (2009) 244–255.
  [35] Concise Oxford Dictionary. tenth ed. (1999) University Press, Oxford.
  [36] Corbett, J.; et al., Nanotechnology: international developments and emerging products, Ann. CIRP 49 (2) (2000) 523–545.
  [37] Cottier, K.; Horvath, R., Imageless microscopy of surface patterns using optical waveguides, Appl. Phys. B 91 (2008) 319–327.
  [38] Csúcs, G.; Ramsden, J.J., Interaction of phospholipid vesicles with smooth metal oxide surfaces, Biophys. Biochim. Acta 1369 (1998) 61–70.
  [39] Dér, A.; et al., Interfacial water structure controls protein conformation, J. Phys. Chem. B 111 (2007) 5344–5350.
  [40] Dennard, R.H.; et al., Design of ion-implanted MOSFETs with very small physical dimensions, IEEE J. Solid State Circuits SC-9 (1974)
      256–268.
  [41]
  [42] Dirac, P.A.M., The Principles of Quantum Mechanics. fourth ed. (1967) Clarendon Press, Oxford; (Ch. 1.).
  [43] Drexler, K.E., Molecular engineering: an approach to the development of general capabilities for molecular manipulation, Proc. Natl Acad. Sci.
      USA 78 (1981) 5275–5278.
   137   138   139   140   141   142   143   144   145   146   147