Page 143 - Nanotechnology an introduction
P. 143
[44] Duan, X.; Lieber, C.M., General synthesis of compound semiconductor nanowires, Adv. Mater. 12 (2000) 298–302.
[45] Duan, X.; et al., Single nanowire electrically driven lasers, Nature 421 (2003) 241–245.
[46] Edwards, S.F.; Oakeshott, R.D.S., Theory of powders, Physica A 157 (1989) 1080–1090.
[47] Efros, A.L.; Efros, A.L., Interband absorption of light in a semiconductor sphere, Soviet Physics of Semiconductors 16 (1982) 772–775.
[48] Efros, A.L.; Shklovskii, B.I., Coulomb gap and low-temperature conductivity of disordered systems, J. Phys. C 8 (1975) L49–L51.
[49] Fabb, W.E., Conceptual leaps in family medicine: are there more to come?Asia Pac. Fam. Med. 1 (2002) 67–73.
[50] Faraday, M., Experimental relations of gold (and other metals) to light (Bakerian Lecture), Phil. Trans. R. Soc. 147 (1857) 145–181.
[51] Fang, Y.; et al., Resonant waveguide grating biosensor for living cell sensing, Biophys. J. 91 (2006) 1925–1940.
[52] Fernández, A.; Cendra, H., In vitro RNA folding: the principle of sequential minimization of entropy loss at work, Biophys. Chem. 58 (1996)
335–339.
[53] Fernández, A.; Colubri, A., Microscopic dynamics from a coarsely defined solution to the protein folding problem, J. Math. Phys. 39 (1998)
3167–3187.
[54] Fernández, A.; Scott, R., Dehydron: a structurally encoded signal for protein interaction, Biophys. J. 85 (2003) 1914–1928.
[55] Fernández, A.; Ramsden, J.J., On adsorption-induced denaturation of folded proteins, J. Biol. Phys. Chem. 1 (2001) 81–84.
[56] Feynman, R., There's plenty of room at the bottom, J. Microelectromech. Syst. 1 (1992) 60–66; (transcript of a talk given by the author on 26
December 1959 at the annual meeting of the American Physical Society at the California Institute of Technology).
[57] von Foerster, H., On self-organizing systems and their environments, In: (Editors: Yorvitz, M.C.; Cameron, S.) Self-Organizing Systems (1960)
Pergamon Press, Oxford, pp. 31–50.
[58] Funatsu, T.; et al., Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,
Nature 374 (1995) 555–559.
[59] Galam, S.; Mauger, A., Universal formulas for percolation thresholds, Phys. Rev. E 53 (1996) 2177–2181.
[60] Gefen, Y.; Meir, Y.; Aharony, A., Geometric implementation of hypercubic lattices with noninteger dimensionality by use of low lacunarity fractal
lattices, Phys. Rev. Lett. 50 (1983) 145–148.
[61] Gell-Mann, M.; Lloyd, S., Information measures, effective complexity, and total information, Complexity 2 (1996) 44–52.
[62] Gorelik, J.; et al., Non-invasive imaging of stem cells by scanning ion conductance microscopy: future perspective, Tissue Eng. C 14 (2008)
311–318.
[63] Graham, T., On liquid diffusion applied to analysis, J. Chem. Soc. 15 (1862) 216–255.
[64] Gray, B.F., Reversibility and biological machines, Nature (Lond.) 253 (1975) 436–437.
[65] Grosberg, A.Yu.; Nguyen, T.T.; Shklovskii, B.I., The physics of charge inversion in chemical and biological systems, Rev. Mod. Phys. 74 (2002)
329–345.
[66] Gudiksen, M.S.; Lieber, C.M., Diameter-selective synthesis of semiconductor nanowires, J. Am. Chem. Soc. 122 (2000) 8801–8802.
[67] Hall, K.C.; et al., Nonmagnetic semiconductor spin transistor, Appl. Phys. Lett. 83 (2004) 2937–2939.
[68] Hampp, N., Bacteriorhodopsin as a photochromic retinal protein for optical memories, Chem. Rev. 100 (2000) 1755–1776.
[69] Hashimoto, T.; Tanaka, H.; Hasegawa, H., Ordered Structure in Mixtures of a Block Copolymer and Homopolymers. 2. Effects of Molecular
Weights of Homopolymers, Macromolecules 23 (1990) 4378–4386.
[70] Hanein, D.; et al., Selective interactions of cells with crystal surfaces, J. Cell Sci. 104 (1993) 27–288.
[71] Hauffe, K., Fehlordnungsgleichgewichte in halbleitenden Kristallen vom Standpunkt des Massenwirkungsgesetzes, In: (Editor: Schottky, W.)
Halbleiterprobleme (1954) Vieweg, Brunswick, pp. 107–127.
[72] Healy, T.W.; White, L.R., Ionizable surface group models of aqueous interfaces, Adv. Colloid Interface Sci. 9 (1978) 303–345.
[73] Hierold, C., From micro- to nanosystems: mechanical sensors go nano, J. Micromech. Microeng. 14 (2004) S1–S11.
[74] Hillman, H., The Case for New Paradigms in Cell Biology and in Neurobiology. (1991) Edwin Mellen Press, Lewiston.
[75] Hiratsuka, Y.; et al., A microrotatory motor powered by bacteria, Proc. Natl Acad. Sci. USA 103 (2006) 13618–13623.
[76] Högberg, B.; Olin, H., Programmable self-assembly—unique structures and bond uniqueness, J. Computat. Theor. Nanosci. 3 (2006)
391–397.
[77] Hogg, T., Evaluating microscopic robots for medical diagnosis and treatment, Nanotechnol. Percept. 3 (2007) 63–73.
[78] Holy, T.E.; Leibler, S., Dynamic instability of microtubules as an efficient way to search in space, Proc. Natl Acad. Sci. USA 91 (1994)
5682–5685.
[79] Horvath, R.; Ramsden, J.J., Quasi-isotropic analysis of anisotropic thin films on optical waveguides, Langmuir 23 (2007) 9330–9334.
[80] Horvath, R.; et al., Multidepth screening of living cells using optical waveguides, Biosens, Bioelectron. 24 (2008) 805–810.
[81] Horvath, R.; Lindvold, L.R.; Larsen, N.B., Reverse-symmetry waveguides: theory and fabrication, Appl. Phys. B 74 (2002) 383–393.
[82] Hubbe, M.A., Adhesion and detachment of biological cells in vitro, Prog. Surf. Sci. 11 (1981) 65–138.
[83]
[84] Iler, R.K., Multilayers of colloidal particles, J. Colloid Interface Sci. 21 (1966) 569–594.
[85] Iles, A., Microsystems for the enablement of nanotechnologies, Nanotechnol. Percept. 5 (2009) 121–133.
[86] Ishijima, A.; et al., Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with
actin, Cell 92 (1998) 161–171.
[87] Jäger, I.; Fratzl, P., Mineralized collagen fibrils, Biophys. J. 79 (2000) 1737–1746.
[88] Jaschke, M.; Butt, H.-J., Deposition of organic material by the tip of a scanning force microscope, Langmuir 11 (1995) 1061–1064.