Page 145 - Nanotechnology an introduction
P. 145

microscopy, Phys. Rev. Lett. 90 (2003).
  [131] Oyabu, N.; et al., Single atomic contact adhesion and dissipation in dynamic force microscopy, Phys. Rev. Lett. 96 (2006).
  [132] Paine, T.O.; Mendelsohn, L.I.; Luborsky, F.E., Effect of shape anisotropy on the coercive force of elongated single-magnetic-domain iron
      particles, Phys. Rev. 100 (1955) 1055–1059.
  [133] Planck, M., The concept of causality, Proc. Phys. Soc. 44 (1932) 529–539.
  [134] Politi, A.; O'Brien, J.L., Quantum computation with photons, Nanotechnol. Percept. 4 (2008) 289–294.
  [135] Ramsden, J.J., The nucleation and growth of small CdS aggregates by chemical reaction, Surf. Sci. 156 (1985) 1027–1039.
  [136] Ramsden, J.J., The stability of superspheres, Proc. R. Soc. Lond. A 413 (1987) 407–414.
  [137] Ramsden, J.J., Electron diffraction anomalies in small CdS clusters, J. Cryst. Growth 82 (1987) 569–572.
  [138] Ramsden, J.J., Impedance of pore-containing membranes, Stud. Biophys. 130 (1989) 83–86.
  [139] Ramsden, J.J., Molecular orientation in lipid bilayers, Phil. Mag. B 79 (1999) 381–386.
  [140] Ramsden, J.J.; Grätzel, M., Formation and decay of methyl viologen radical cation dimers on the surface of colloidal CdS, Chem. Phys. Lett.
      132 (1986) 269–272.
  [141] Ramsden, J.J.; Horvath, R., Optical biosensors for cell adhesion, J. Recept. Signal Transduct 29 (2009) 211–223.
  [142] Ramsden, J.J.; Bachmanova, G.I.; Archakov, A.I., Kinetic evidence for protein clustering at a surface, Phys. Rev. E. 50 (1994) 5072–5076.
  [143] Ramsden, J.J.; Lvov, Yu.A.; Decher, G., Optical and X-ray structural monitoring of molecular films assembled via alternate polyion adsorption,
      Thin Solid Films 254 (1995) 246–251; ibid., 261 (1995) 343–344.
  [144] Ramsden, J.J.; et al., An optical method for the measurement of number and shape of attached cells in real time, Cytometry 19 (1995)
      97–102.
  [145] Ramsden, J.J.; et al., The design and manufacture of biomedical surfaces, Ann. CIRP 56 (2) (2007) 687–711.
  [146] Reibold, M.; et al., Carbon nanotubes in an ancient Damascus sabre, Nature 444 (2006) 286.
  [147] Rényi, A., Kémiai reakciók tárgyalása a sztochasztikus folyamatok elmélete segítségével, Magy. Tud. Akad. Mat. Kut. Int. Közl. 2 (1953)
      83–101.
  [148] Revell, P.A., The biological effects of nanoparticles, Nanotechnol. Percept. 2 (2006) 283–298.
  [149] Schwarz, G., Cooperative binding to linear biopolymers, Eur. J. Biochem. 12 (1970) 442–453.
  [150] Schwarz, U.D.; et al., H. Guentherodt. Tip artefacts in scanning force microscopy, J. Microsc. 173 (1994) 183–197.
  [151] Schweizer, E.K.; Eigler, D.M., Positioning single atoms with a scanning tunneling microscope, Nature (Lond.) 344 (1990) 524–526.
  [152] Sinanoğlu, O., Microscopic surface tension down to molecular dimensions and micro thermodynamic surface areas of molecules or clusters,
      J. Chem. Phys. 75 (1981) 463–468.
  [153] Snider, G.L.; et al., Quantum dot cellular automata: review and recent experiments, J. Appl. Phys. 85 (1999) 4283–4285.
  [154] Sommerhoff, G., Analytical Biology. (1950) Oxford University Press, London; pp. 124–126.
  [155] Spatz, J.P.; Khokhlov, A.R.; Winkler, R.G.; Reineker, P., Order-disorder transition in surface-induced nanopatterns of block copolymer films,
      Macromolecules 33 (2000) 150–157.
  [156] Spratte, K.; Chi, L.F.; Riegler, H., Physisorption instabilities during dynamic Langmuir wetting, Europhys. Lett. 25 (1994) 211–217.
  [157] Sugimoto, Y.; et al., Complex patterning by vertical interchange atom manipulation using atomic force microscopy, Science 322 (2008)
      413–417.
  [158] Sze, S.M., Physics of Semiconductor Devices. second ed. (1981) Wiley, New York; Appendix G.
  [159] Taniguchi, N., On the basic concept of nano-technology, In: Proc. Intl Conf. Prod. Engng, Part II (Jap. Soc. Precision Engng)Tokyo. (1974),
      pp. 18–23.
  [160] Teixeira, A.I.; Nealey, P.F; Murphy, C.J., Responses of human keratinocytes to micro- and nanostructured substrates, J. Biomed. Mater. Res.
      71A (2004) 369–376.
  [161] Thomas, S.R., Modelling and simulation of the kidney, J. Biol. Phys. Chem. 5 (2005) 70–83.
  [162] Tiefenthaler, K.; Lukosz, W., Sensitivity of grating couplers as integrated-optical chemical sensors, J. Opt. Soc. Am. B 6 (1989) 209–220.
  [163] Ichikawa, K.; et al., Nonvolatile thin film transistor memory with ferritin, J. Korean Phys. Soc. 54 (2009) 554–557.
  [164] Walter, Ph.; et al., Early use of PbS nanotechnology for an ancient hair dying formula, Nano Lett. 6 (2006) 2215–2219.
  [165] Weisskopf, V.F., Quality and quantity in quantum physics, Daedalus 88 (1959) 592–605.
  [166] de Wilde, Y.; et al., Thermal radiation scanning tunnelling microscopy, Nature (Lond.) 444 (2006) 740–743.
  [167] Wilson, S.A.; et al., Enhanced dc conductivity of low volume-fraction nano-particulate suspensions in silicone and perfluorinated oils, J. Phys.
      D 42 (2009) 062003.
  [168] Wolff, E.K.; Dér, A., All-optical logic, Nanotechnol. Percept. 6 (2010) 51–56.
  [169] Xu, T.; et al., The influence of molecular weight on nanoporous polymer films, Polymer 42 (2001) 9091–9095.
  [170] Yakubov, G.E.; et al., Viscous boundary lubrication of hydrophobic surfaces by mucin, Langmuir 25 (2009) 2313–2321.
  [171] Yanagida, T.; Harada, Y.; Ishijima, A., Nanomanipulation of actomyosin molecular motors in vitro: a new working principle, Trends Biochem.
      Sci. (TIBS) 18 (1993) 319–323.
  [172] Yoffe, A.D., Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional
      systems) and some quasi-two-dimensional systems, Adv. Phys. 42 (1993) 173–266.
  [173] Young, R.; et al., The Topografiner: an instrument for measuring surface microtopography, Rev. Sci. Instrum. 43 (1972) 999–1011.
   140   141   142   143   144   145   146   147   148   149   150