Page 150 - New Trends In Coal Conversion
P. 150
Coal and biomass cofiring: CFD modeling 113
Chen, L., Ghoniem, A.F., 2014. Modeling CO 2 chemical effects on CO formation in oxy-fuel
diffusion flames using detailed, quasi-global, and global reaction mechanisms. Combus-
tion Science and Technology 186, 829e848.
Chui, E.H., Hughes, P.M.J., Raithby, G.D., 1993. Implementation of the finite volume method
for calculating radiative transfer in a pulverized fuel flame. Combustion Science and
Technology 92, 225e242.
Collazo, J., Porteiro, J., Pati~ no, D., Granada, E., 2012. Numerical modeling of the combustion of
densified wood under fixed-bed conditions. Fuel 93, 149e159.
Costa, M., Massarotti, N., Indrizzi, V., Rajh, B., Yin, C., Samec, N., 2014. Engineering bed
models for solid fuel conversion process in grate-fired boilers. Energy 77, 244e253.
De Soete, G.G., 1975. Overall reaction rates of NO and N 2 formation from fuel nitrogen.
Proceedings of the Combustion Institute 15, 1093e1102.
Glarborg, P., Jensen, A.D., Johnsson, J.E., 2003. Fuel nitrogen conversion in solid fuel fired
systems. Progress in Energy and Combustion Science 29, 89e113.
Goddard, C.D., Yang, Y.B., Goodfellow, J., Sharifi, V.N., Swithenbank, J., Chartier, J., et al.,
2005. Optimisation study of a large waste-to-energy plant using computational modelling
and experimental measurements. Journal of the Energy Institute 78, 106e116.
Goerner, K., Klasen, T., 2006. Modelling, simulation and validation of the solid biomass
combustion in different plants. Progress in Computational Fluid Dynamics 6, 225e234.
G omez, M.A., Porteiro, J., Pati~ no, D., Míguez, J.L., 2014. CFD modelling of thermal conversion
and packed bed compaction in biomass combustion. Fuel 117, 716e732.
Grant, D.M., Pugmire, R.J., Fletcher, T.H., Kerstein, A.R., 1989. Chemical percolation model of
coal devolatilization using percolation lattice statistics. Energy & Fuels 3, 175e186.
Guo, J., Li, X., Huang, X., Liu, Z., Zheng, C., 2015. A full spectrum k-distribution based
weighted-sum-of-gray-gases model for oxy-fuel combustion. International Journal of Heat
and Mass Transfer 90, 218e226.
Hill, S.C., Smoot, L.D., 2000. Modeling of nitrogen oxides formation and destruction in
combustion systems. Progress in Energy and Combustion Science 26, 417e458.
Hottel, H.C., Sarofim, A.F., 1967. Radiative Transfer. McGraw-Hill, New York.
IEA: 2017. Bioenergy Agreement Task32. www.ieabcc.nl/database/cofiring.php .
Johansson, R., Thunman, H., Leckner, B., 2007. Sensitivity analysis of a fixed bed combustion
model. Energy & Fuels 21, 1493e1503.
Johansson, R., Leckner, B., Andersson, K., Johnsson, F., 2011. Account for variations in the
H 2 OtoCO 2 molar ratio when modeling gaseous radiative heat transfer with the weighted-
sum-of-grey-gases model. Combustion and Flame 158, 893e901.
Jones, W.P., Lindstedt, R.P., 1988. Global reaction schemes for hydrocarbon combustion.
Combustion and Flame 73, 233e249.
Kangwanpongpan, T., França, F.H.R., da Silva, R.C., Schneider, P.S., Krautz, H.J., 2012. New
correlations for the weighted-sum-of-gray-gases model in oxy-fuel conditions based on
HITEMP 2010 database. International Journal of Heat and Mass Transfer 55, 7419e7433.
Kim, S., Shin, D., Choi, S., 1996. Comparative evaluation of municipal solid waste incinerator
designs by flow simulation. Combustion and Flame 106, 241e251.
st
Kitto, J.B., Stultz, S.C., 2005. Steam: Its Generation and Use, 41 ed. The Babcock & Wilcox
Company, Ohio.
Klason, T., Bai, X.S., 2006. Combustion process in a biomass grate fired industry furnace: a
CFD study. Progress in Computational Fluid Dynamics 6, 278e282.
Kobayashi, H., Howard, J.B., Sarofim, A.F., 1976. Coal devolatilization at high temperatures.
Proceedings of the Combustion Institute 16, 411e425.

