Page 217 - New Trends in Eco efficient and Recycled Concrete
P. 217
Steel slags 187
CEDEX Ministerio de Fomento, 2018. Usable Waste in Construction Catalogo de resi-
duos utilizables en construccio ´n. Available from hhttp://www.cedexmateriales.es/2/cata-
logo-de-residuos/i.
Cheng, S., Shui, Z., Sun, T., Yu, R., Zhang, G., Ding, S., 2017. Effects of fly ash, blast fur-
nace slag and metakaolin on mechanical properties and durability of coral sand concrete.
Appl. Clay Sci. 141, 111 117.
Dadsetan, S., Bai, J., 2017. Mechanical and microstructural properties of self-compacting
concrete blended with metakaolin, ground granulated blast-furnace slag and fly ash.
Constr. Build. Mater. 146, 658 667.
Das, B., Prakash, S., Reddy, P.S.R., Misra, V.N., 2007. An overview of utilization of slag
and sludge from steel industries. Resour. Conserv. Recycl. 50, 40 57.
Davidovits, J. Geopolymers of the first generation: SILIFACE-Process, Geopolymer ‘88.
First European Conference on Soft Mineralurgy; 1988.
EUROSLAG. 2018. Chemical Properties of Different Types of Ferrous Slag. Available from:
http://www.euroslag.com/products/properties.
The Corrosion Engineering Association, 2003. Engineering properties of cement mortar with
different EAF and VOD. In: The Corrosion Engineering Association of the Republic of
China 2003 Conference.
Etxeberria, M., Pacheco, C., Meneses, J., Berridi, I., 2010. Properties of concrete using met-
allurgical industrial by-products as aggregates. Constr. Build. Mater. 24 (9),
1594 1600.
Gunasekara, C., Law, D.W., Setunge, S., Sanjayan, J.G., 2015. Zeta potential, gel formation
and compressive strength of low calcium fly ash geopolymers. Constr. Build. Mater. 95,
592 599.
Huaiwei, Z., Xin, H., 2011. An overview for the utilization of wastes from stainless steel
industries. Resour. Conserv. Recycl. 55, 745 754.
Sosa, I., Doctoral Thesis - 2017. Incorporacio ´n de escorias siderurgicas en hormigones auto-
compactantes de altas prestaciones. Supervisors: Polanco, J.A. and Thomas, C.
Johnson, D.C., Macleod, C.L., Carey, P.J., Hills, C.D., 2003. Solidification of stainless steel
slag by accelerated carbonation. Environ. Technol. 24 (6), 671 678.
Juckes, L.M., 2003. The volume stability of modern steelmaking slags. Mineral Process.
Extr. Metall. 112 (3), 177 197.
Karthik, A., Sudalaimani, K., Kumar, C.V., 2017. Investigation on mechanical properties of
fly ash-ground granulated blast furnace slag based self curing bio-geopolymer concrete.
Constr. Build. Mater. 149, 338 349.
¨
Kriskova, L., Pontikes, Y., Cizer, O., Mertens, G., Veulemans, W., Geysen, D., et al., 2012.
Effect of mechanical activation on the hydraulic properties of stainless steel slags. Cem.
Concr. Res. 42 (6), 778 788.
Liu, R., Han, F., Yan, P., 2013. Characteristics of two types of C S H gel in hardened com-
plex binder pastes blended with slag. Sci. China Technol. Sci. 56 (6), 1395 1402.
Luxa ´n, M.P., Sotolongo, R., Dorrego, F., Herrero, E., 2000. Characteristics of the slags pro-
duced in the fusion of scrap steel by electric arc furnace. Cem. Concr. Res. 30, 517 519.
Mahieux, P., Aubert, J., Escadeillas, G., 2009. Utilization of weathered basic oxygen furnace
slag in the production of hydraulic road binders. Constr. Build. Mater. 23, 742 747.
Majhi, R.K., Nayak, A.N., Mukharjee, B.B., 2018. Development of sustainable concrete
using recycled coarse aggregate and ground granulated blast furnace slag. Constr. Build.
Mater. 159, 417 430.
Manso, J.M., Gonzalez, J.J., Polanco, J.A., 2004. Electric arc furnace slag in concrete. J.
Mater. Civil Eng. 16 (6), 639 645.