Page 219 - New Trends in Eco efficient and Recycled Concrete
P. 219
Steel slags 189
Pellegrino, C., Faleschini, F., 2016. Electric arc furnace slag concrete. Sustainability
Improvements in the Concrete Industry. Springer, Cham, pp. 77 106.
Pellegrino, C., Gaddo, V., 2009. Mechanical and durability characteristics of concrete con-
taining EAF slag as aggregate. Cem. Concr. Compos. 31, 663 671.
Pellegrino, C., Cavagnis, P., Faleschini, F., Brunelli, K., 2013. Properties of concretes with
black/oxidizing electric arc furnace slag aggregate. Cem. Concr. Compos. 37, 232 240.
Poh, H.Y., Ghataora, G.S., Nizar, G., 2006. Soil stabilization using basic oxygen steel slag
fines. J. Mater. Civil Eng. 18 (2), 229 240. 04/01; 2017/12.
Scientific Research Institute on Binders and Materials Kiev State Technical University, 1994.
Properties of geopolymer cements. In: First International Conference on Alkaline
Cements and Concretes: Scientific Research Institute on Binders and Materials Kiev
State Technical University, Ukraine.
Qian, G.R., Sun, D.D., Tay, J.H., Lai, Z.Y., 2002. Hydrothermal reaction and autoclave sta-
bility of Mg bearing RO phase in steel slag. Br. Ceram. Trans. 101 (4), 159 164.
Ramachandran, V.S., 1981. Waste and by-products as concrete aggregates. Can. Build. Dig.
(215), .
Rao, A., Jha, K.N., Misra, S., 2007. Use of aggregates from recycled construction and demo-
lition waste in concrete. Resour. Conserv. Recycl. 50 (1), 71 81.
Ravikumar, D., Peethamparan, S., Neithalath, N., 2010. Structure and strength of NaOH acti-
vated concretes containing fly ash or GGBFS as the sole binder. Cem. Concr. Compos.
32 (6), 399 410.
´
´
Rodriguez, A., Manso, J.M., Arago ´n, A., Gonzalez, J.J., 2009. Strength and workability of
masonry mortars manufactured with ladle furnace slag. Resour. Conserv. Recycl. 53,
645 651.
Rojas, M.F., De Rojas, M.S., 2004. Chemical assessment of the electric arc furnace slag as
construction material: expansive compounds. Cem. Concr. Res. 34 (10), 1881 1888.
Rosales, J., Cabrera, M., Agrela, F., 2017. Effect of stainless steel slag waste as a replace-
ment for cement in mortars. Mechanical and statistical study. Constr. Build. Mater. 142,
444 458.
Saha, S., Rajasekaran, C., 2017. Enhancement of the properties of fly ash based geopolymer
paste by incorporating ground granulated blast furnace slag. Constr. Build. Mater. 146,
615 620.
San-Jose ´, J.T., Vegas, I., Arribas, I., Marcos, I., 2014. The performance of steel-making slag
concretes in the hardened state. Mater. Des. 60, 612 619.
Santamarı ´a, A., Orbe, A., Losan ˜ez, M.M., Skaf, M., Ortega-Lopez, V., Gonza ´lez, J.J., 2017.
Self-compacting concrete incorporating electric arc-furnace steelmaking slag as aggre-
gate. Mater. Des. 115, 179 193.
Santamarı ´a, A., Orbe, A., San Jose ´, J.T., Gonza ´lez, J.J., 2018. A study on the durability of
structural concrete incorporating electric steelmaking slags. Constr. Build. Mater. 161,
94 111.
Schneider, M., Romer, M., Tschudin, M., Bolio, H., 2011. Sustainable cement production
present and future. Cem. Concr. Res. 41 (7), 642 650.
Setie ´n, J., Herna ´ndez, D., Gonza ´lez, J.J., 2009. Characterization of ladle furnace basic slag
for use as a construction material. Constr. Build. Mater. 23, 1788 1794.
Shi, C., 2004. Steel slag its production, processing, characteristics, and cementitious prop-
erties. J. Mater. Civil Eng. 16 (3), 230 236.
Sharma, S., Singla, S., 2015. A comparative study on effect of basic oxygen furnace slag and
iron cutting waste on strength properties of concrete. Int. J. Res. Eng. Technol. 04,
478 482.