Page 218 - New Trends in Eco efficient and Recycled Concrete
P. 218
188 New Trends in Eco-efficient and Recycled Concrete
Manso, J.M., Losanez, M., Polanco, J.A., Gonzalez, J.J., 2005. Ladle furnace slag in con-
struction. J. Mater. Civil Eng. 17 (5), 513 518.
Manso, J.M., Polanco, J.A., Losanez, M., Gonzalez, J.J., 2006. Durability of concrete made
with EAF slag as aggregate. Cem. Concr. Compos. 28 (6), 528 534.
Manso, J.M., Hernandez, D., Losanez, M.M., Gonza ´lez, J.J., 2011. Design and elaboration of
concrete mixtures using steelmaking slags. ACI Mater. J. 108, 6.
Manso, J.M., Ortega-Lo ´pez, V., Polanco, J.A., Setie ´n, J., 2013. The use of ladle furnace slag
in soil stabilization. Constr. Build. Mater. 40, 126 134.
Martı ´n-Morales, M., Zamorano, M., Ruiz-Moyano, A., Valverde-Espinosa, I., 2011.
Characterization of recycled aggregates construction and demolition waste for concrete
production following the Spanish Structural Concrete Code EHE-08. Constr. Build.
Mater. 25 (2), 742 748.
Maslehuddin, M., Sharif, A.M., Shameem, M., Ibrahim, M., Barry, M., 2003. Comparison of
properties of steel slag and crushed limestone aggregate concretes. Constr. Build. Mater.
17 (2), 105 112.
Michigan State Highway Laboratory (MSHL), 1933. Report of Investigation I 205-2,
Comparative Strength Tests of Pavement Concrete using Slag and Gravel Coarse
Aggregate. Michigan State Highway Laboratory, Ann Arbor, MI.
Ministerio de Fomento Gobierno de Espan ˜a, 2008. EHE-08: Instruccio ´n de Hormigo ´n
Estructural.
Monosi, S., Ruello, M.L., Sani, D., 2016. Electric arc furnace slag as natural aggregate
replacement in concrete production. Cem. Concr. Compos. 66, 66 72.
Montenegro, J.M., Celemı ´n-Matachana, M., Can ˜izal, J., Setie ´n, J., 2013. Ladle furnace slag
in the construction of embankments: expansive behavior. J. Mater. Civil Eng. 25 (8),
972 979.
Motz, H., Geiseler, J., 2001. Products of steel slags an opportunity to save natural resources.
Waste Manage. 21 (3), 285 293.
Nicolae, M., Vˆ ılciu, I., Zaman, F., 2007. X-ray diffraction analysis of steel slag and blast fur-
nace slag viewing their use for road construction. UPB Sci. Bull., Ser. B: Chem. Mater.
Sci. 69 (2), 99 108.
ˇ
Niklio´ c, I., Markovi´ c, S., Jankovi´ c Castvan, I., Radmilovi´ c, V., Karanovi´ c, L., Babi´ c, B.,
et al., 2016. Modification of mechanical and thermal properties of fly ash-based geopo-
lymer by the incorporation of steel slag. Mater. Lect. 176, 301 305.
Nippon Slag Association. Chemical Characteristics of Iron and Steel Slag.
Oluwasola, E., Hainin, M., Aziz, M., 2014. Characteristics and utilization of steel slag in
road construction. Jurnal Teknologi 70 (7), 117 123.
´
Ortega-Lo ´pez, V., Fuente-Alonso, J.A., Santamarı ´a, A., San-Jose ´, J.T., Arago ´n, A., 2018.
Durability studies on fiber-reinforced EAF slag concrete for pavements. Constr. Build.
Mater. 163, 471 481.
Papayianni, I., Anastasiou, E., 2006. Optimization of ladle furnace slag for use as a supple-
mentary cementing material. International Symposium on Measuring, Monitoring and
Modeling Concrete Properties. Northwestern University, U.S.A.Dordrecht, Springer
Netherlands, pp. 411 417.
Papayianni, I., Anastasiou, E., 2010. Production of high-strength concrete using high volume
of industrial by-products. Constr. Build. Mater. 24 (8), 1412 1417.
Pasetto, M., Baldo, N., 2010. Experimental evaluation of high performance base course and
road base asphalt concrete with electric arc furnace steel slags. J. Hazard. Mater. 181 (1-
3), 938 948.