Page 473 - New Trends in Eco efficient and Recycled Concrete
P. 473
Application of alkali-activated industrial waste 423
Wongsa, A., Boonserm, K., Waisurasingha, C., Sata, V., Chindaprasirt, P., 2017. Use of
municipal solid waste incinerator (MSWI) bottom ash in high calcium fly ash geopoly-
mer matrix. J. Cleaner Prod 148, 49 59. Available from: https://doi.org/10.1016/j.
jclepro.2017.01.147.
Xu, H., van Deventer, J.S., 2003. The effect of alkali metals on the formation of geopoly-
meric gels from alkali-feldspars. Colloids and Surfaces A: Physicochemical and
Engineering Aspects 216 (1-3), 27 44.
Yagamuchi, N., Ikeda, K., 2010. Preparation of geopolymeric materials from sewage sludge
slag with special emphasis to the matrix compositions. J. Ceram. Soc. Jpn. 118 (2),
107 112.
Yan, S., Sagoe-Crentsil, K., 2012. Properties of wastepaper sludge in geopolymer mortars for
masonry applications. J. Environ. Manage. 112, 27 32. Available from: https://doi.org/
10.1016/j.jenvman.2012.07.008.
Yan, S., Sagoe-Crentsil, K., 2016. Evaluation of fly ash geopolymer mortar incorporating cal-
cined wastepaper sludge. Sustainable Cem. Based Mater. 1 11. Available from: https://
doi.org/10.1080/21650373.2016.1174962.
Yang, Z.X., Ha, N.R., Jang, M.S., Hwang, K.H., 2009a. Geopolymer concrete fabricated by
waste concrete sludge with silica fume. Mater. Sci. Forum 620 622, 791 794.
Available from: https://doi.org/10.4028/www.scientific.net/MSF.620-622.791.
Yang, Z.X., Ha, N.R., Hwang, K.H., Lee, J.K., 2009b. A study of the performance of a con-
crete sludge-based geopolymer. J. Ceram. Process. Res. 10 (1), s72 s74.
Yang, Z.X., Ha, N.R., Jang, M.S., Hwang, K.H., Lee, J.K., 2009c. The effect of SiO 2 on the
performance of inorganic sludge-based structural concretes. Ceram. Process. Res. 10 (3),
266 268.
Yang, T., Yao, X., Zhang, Z., 2014. Geopolymer prepared with high-magnesium nickel slag:
characterization of properties and microstructure. Constr. Build. Mater. 59, 188 194.
Available from: https://doi.org/10.1016/j.conbuildmat.2014.01.038.
Yang, T., Wu, O., Zhu, H., Zhang, Z., 2017. Geopolymer with improved thermal stability by
incorporating high-magnesium nickel slag. Constr. Build. Mater. 155, 475 484.
Available from: https://doi.org/10.1016/j.conbuildmat.2017.08.081.
Ye, N., Yang, J., Ke, X., Zhu, J., Li, Y., Xiang, C., et al., 2014. Synthesis and characteriza-
tion of geopolymer from Bayer red mud with thermal pretreatment. J. Am. Ceram. Soc
97 (5), 1652 1660. Available from: https://doi.org/10.1111/jace.12840.
Ye, N., Yang, J., Liang, S., Hu, Y., Hu, J., Xiao, B., et al., 2016. Synthesis and strength opti-
mization of one-part geopolymer based on red mud. Constr. Build. Mater. 111,
317 325. Available from: https://doi.org/10.1016/j.conbuildmat.2016.02.099.
Yip, C.K., Lukey, G., Van Deventer, J., 2005. The coexistence of geopolymeric gel and cal-
cium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 35,
1688 1697.
Yliniemi, J., Kinnunen, P., Karinkanta, P., Illikainen, M., 2016. Utilization of mineral wools
as alkali-activated material precursor. Materials 9, 312. Available from: https://doi.org/
10.3390/ma9050312 (1-12).
Yusuf, M.O., Johari, M.A.M., Ahmad, Z.A., Maslehuddin, M., 2014. Evolution of alkaline
activated ground blast furnace slag-ultrafine plan oil fuel ash based concrete. Mater.
Des. 55, 387 393. Available from: https://doi.org/10.1016/j.matdes.2013.09.047.
Zaharaki, D., Galetakis, M., Komnitsas, K., 2016. Valorization of construction and demoli-
tion (C&D) and industrial wastes through alkali activation. Constr. Build. Mater. 121,
686 693. Available from: https://doi.org/10.1016/j.conbuildmat.2016.06.051.