Page 469 - New Trends in Eco efficient and Recycled Concrete
P. 469

Application of alkali-activated industrial waste                  419


           Reig, L., Tashima, M.M., Soriano, L., Borrachero, M.V., Monzo ´, J., Paya ´, J., 2013b.
               Alkaline activation of ceramic waste Materials. Waste Biomass Valorization 4,
               729 736. Available from: https://doi.org/10.1007/s12649-013-9197-z.
           Reig, L., Soriano, L., Borrachero, M.V., Monzo ´, J., Paya ´, J., 2014. Influence of the activator
               concentration and calcium hydroxide addition on the properties of alkali-activated por-
               celain stoneware. Constr. Build. Mater 63, 214 222. Available from: https://doi.org/
               10.1016/j.conbuildmat.2014.04.023.
           Reig,L., Tashima, M.M.,Borrachero, M.V.,Monzo ´, J., Cheeseman, C.R., Paya ´, J., 2016a.
               Properties and microstructure of alkali-activated red clay brick waste. Cem. Concr. Compos.
               65, 177 185. Available from: https://doi.org/10.1016/j.cemconcomp.2015.10.021.
           Reig, L., Borrachero, M.V., Monzo ´, J., Savastano Jr, H., Tashima, M.M., Paya ´, J., 2016b.
               Use of ceramic sanitary ware as an alternative for the development of new sustainable
               binders. Key Eng. Mater 668, 172 189. Available from: https://doi.org/10.4028/www.
               scientific.net/KEM.668.172.
           Reig, L., Sanz, M.A., Borrachero, M.V., Monzo ´, J., Soriano, L., Paya ´, J., 2017. Compressive
               strength and microstructure of alkali-activated mortars with high ceramic waste content.
               Ceram.  Int.  43,  13622 13634.  Available  from:  https://doi.org/10.1016/j.
               ceramint.2017.07.072.
           Reig, L., Soriano, L., Tashima, M.M., Borrachero, M.V., Monzo ´, J., Paya ´, J., 2018. Influence
               of calcium additions on the compressive strength and microstructure of alkali-activated
               ceramic sanitary-ware. J. Am. Ceram. Soc 1 11. Available from: https://doi.org/
               10.1111/jace.15436.
           Richardson, I., Brough, A., Groves, G., Dobson, C., 1994. The characterization of hardened
               alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate
               (CSH) phase. Cem. Concr. Res. 24, 813 829.
           Ridtirud, C., Chindaprasirt, P., Pimraksa, K., 2011. Factors affecting the shrinkage of fly ash
               geopolymers. Int. J. Min. Metall. Mater. 18 (1), 100 104. Available from: https://doi.
               org/10.1007/s12613-011-0407-z.
           Robayo, R.A., Mulford, A., Munera, J., Mejı ´a de Gutierrez, R., 2016. Alternative cements
               based on alkali-activated red clay brick waste. Constr. Build. Mater 128, 163 169.
               Available from: https://doi.org/10.1016/j.conbuildmat.2016.10.023.
           Robayo-Salazar, R.A., Mercedes, J., Mejı ´a-Arcila, M., Mejı ´a de Gutierrez, R., 2017. Eco-
               efficient alkali-activated cement based on red clay brick wastes suitable for the
               manufacturing of building Materials. J. Cleaner Prod 177, 242 252. Available from:
               https://doi.org/10.1016/j.jclepro.2017.07.243.
           Rodriguez, E.D., Bernal, S.A., Provis, J.L., Gehman, J.D., Monzo ´, J., Paya ´, J., et al., 2013.
               Geopolymers base don spent catalyst residue from a fluid catalytic cracking (FCC) pro-
               cess. Fuel 109, 493 502. Available from: https://doi.org/10.1016/j.fuel.2013.02.053.
           Sakkas, K., Nomikos, P., Sofianos, A., Panias, D., 2014. Utilization of FeNi-slag for de pro-
               duction of inorganic polymeric Materials for Construction or for passive fire protection.
               Waste Biomass Valorization 5, 403 410. Available from: https://doi.org/10.1007/
               s12649-013-9278-z.
           Salami, B.A., Johari, M.A.M., Ahmad, Z.A., Maslehuddin, M., 2016. Impact of added water
               and superplasticizer on early compressive strength of selected mixtures of palm oil fuel
               ash-based engineered geopolymer composites. Constr. Build. Mater 109, 198 206.
               Available from: https://doi.org/10.1016/j.conbuildmat.2016.01.033.
           Salami, B.A., Johari, M.A.M., Ahmad, Z.A., Maslehuddin, M., 2017. Durability performance
               of palm oil fuel ash-based engineered alkaline activated. Constr. Build. Mater 131,
               229 244. Available from: https://doi.org/10.1016/j.conbuildmat.2016.11.048.
   464   465   466   467   468   469   470   471   472   473   474