Page 465 - New Trends in Eco efficient and Recycled Concrete
P. 465
Application of alkali-activated industrial waste 415
Lampris, C., Lupo, R., Cheeseman, C.R., 2009. Geopolymerisation of silt generated from
construction and demolition waste washing plants. Waste Manage. 29, 368 373.
Available from: https://doi.org/10.1016/j.wasman.2008.04.007.
Lancellotti, I., Ponzoni, C., Bignozzi, M.C., Barbieri, L., Leonelli, C., 2014. Incinerator bot-
tom ash and ladle slag for geopolymers preparation. Waste Biomass Valorization 5,
393 401. Available from: https://doi.org/10.1007/s12649-014-9299-2.
Lecomte, I., Henrist, C., Lie ´geois, M., 2006. A (micro)-structural comparison between geopo-
lymers, alkali-activated slag cement and Portland cement. J. Eur. Ceram. Soc. 26 (16),
3789 3797.
Ledesma, E., Jime ´nez, J., Ferna ´ndez, J., Galvı ´n, A., Agrela, F., Barbudo, A., 2014. Properties
of masonry mortars manufactured with fine recycled concrete aggregates. Constr. Build.
Mater. 71, 289 298.
Leonelli, C., Romagnoli, M., 2015. Chapter 6: Rheology parameters of alkali-activated geo-
polymeric concrete binders. Handbook of Alkali-Activated Cements, Mortars and
Concretes, pp. 133 169.
Li, Z., Ohnuki, T., Ikeda, K., 2016. Development of paper sludge ash-based geopolymer and
application to treatment of hazardous water contaminated with radioisotopes. Materials
9, 633. Available from: https://doi.org/10.3390/ma9080633 (1-17).
Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., Illikainen, M., 2018.
Comparison of alkali and silica sources in one-part alkali-activated blast furnace slag
mortar. J. Cleaner Prod. 187, 171 179.
Ma, B., Su, L., Jian, S., Song, X., Zhai, Y., 2011. Research on activation of abandoned mor-
tar powder construction waste. Adv. Mater. Res. 168 170, 1222 1227. Available from:
https://doi.org/10.4028/www.scientific.net/AMR.168-170.
Maragkos, I., Giannopuolou, I.P., Panias, D., 2009. Synthesis of ferronickel slag-based geo-
polymers. Miner. Eng 22, 196 203. Available from: https://doi.org/10.1016/j.
mineng.2008.07.003.
Matalkah, F., Soroushian, P., Ul Abideen, S., Peyvandi, A., 2016. Use of non-wood biomass
combustion ash in development of alkali-activated concrete. Constr. Build. Mater 121,
491 500. Available from: https://doi.org/10.1016/j.conbuildmat.2016.06.023.
Mejı ´a, J.M., Mejı ´a de Gutie ´rrez, R., Puertas, F., 2013. Rice husk ash as a source of silica in
alkali-activated fly ash and granulated blast furnace slag systems. Materiales de
Construccio ´n 63, 361 375. Available from: https://doi.org/10.3989/mc.2013.04712.
Mejı ´a, J.M., Mejı ´a de Gutie ´rrez, R., Montes, C., 2016. Rice husk ash and spent diatomaceous
earth as a source of silica to fabricate a geopolymeric binary binder. J. Cleaner Prod.
118, 133 139. Available from: https://doi.org/10.1016/j.jclepro.2016.01.057.
Mellado, A., Catala ´n, C., Bouzo ´n, N., Borrachero, M.V., Monzo ´, J., Paya ´, J., 2014. Carbon
footprint of geopolymeric mortar: study of the contribution of the alkaline activating
solution and assessment of an alternative route. RSC Adv. 4, 23846. Available from:
https://doi.org/10.1039/c4ra03375b.
Mijarsh, M.J.A., Johari, M.A.M., Ahmad, Z.A., 2015. Compressive strength of treated palm
oil fuel ash based geopolymer mortar containing calcium hydroxide, aluminum hydrox-
ide and silica fume as mineral additives. Cem. Concr. Compos. 60, 65 81. Available
from: https://doi.org/10.1016/j.cemconcomp.2015.02.007.
Moraes, J.C.B., Font, A., Soriano, L., Akasaki, J.L., Tashima, M.M., Monzo ´, J., et al., In
press. New use of sugar cane straw ash in alkali-activated Materials: a silica source for
the preparation of the alkaline activator. Constr. Build. Mater. Available from: https://
doi.org/10.1016/C2013-0-16511-7