Page 460 - New Trends in Eco efficient and Recycled Concrete
P. 460

410                               New Trends in Eco-efficient and Recycled Concrete


         Castaldelli, V.N., Akasaki, J.L., Melges, J.L.P., Tashima, M.M., Soriano, L., Borrachero, M.
             V., et al., 2013. Use of slag/sugar cane bagasse ash (SCBA) blends in the production of
             alkali-activated materials. Materials 6, 3108 3127. Available from: https://doi.org/
             10.3390/ma6083108.
         Castaldelli, V.N., Tashima, M.M., Melges, J.L., Akasaki, J.L., Monzo ´, J., Borrachero, M.V.,
             et al., 2014. Preliminary studies on the use of sugar cane bagasse ash (SCBA) in the
             manufacture of alkali activated binders. Key Eng. Mater 600, 689 698. Available from:
             https://doi.org/10.4028/www.scientific.net/KEM.600.689.
         Castaldelli, V.N., Moraes, J.C.B., Akasaki, J.L., Melges, J.L.P., Monzo ´, J., Borrachero, M.V.,
             et al., 2016. Study of the binary system fly ash/sugarcane bagasse as (FA/SCBA) in
             SiO 2 /K 2 O alkali-activated binders. Fuel 174, 307 316. Available from: https://doi.org/
             10.1016/j.fuel.2016.02.020.
         Chakraborty, S., Jo, B.W., Jo, J.H., Baloch, Z., 2017. Effectiveness of sewage sludge ash
             combined with waste pozzolanic minerals in developing sustainable Construction mate-
             rial: An alternative approach for waste management. J. Cleaner Prod 153, 253 263.
             Available from: https://doi.org/10.1016/j.jclepro.2017.03.059.
         Cheah, C.B., Part, W.K., Ramli, M., 2015. The hybridizations of coal fly ash and wood ash
             for the fabrication of low alkalinity geopolymer load bearing block cured at ambient
             temperature. Constr. Build. Mater 88, 41 55. Available from: https://doi.org/10.1016/j.
             conbuildmat.2015.04.020.
         Chindaprasirt, P., De Silva, P., Sagoe-Crentsil, K., Hanjitsuwan, S., 2012. Effect of SiO 2 and
             Al2O 3 on the setting and hardening of high calcium fly ash-based geopolymer systems.
             J. Mater. Sci. 47, 4876 4883.
         Choo, H., Lim, S., Lee, W., Lee, C., 2016. Compressive strength of one-part alkali activated
             fly ash using red mud as alkali supplier. Constr. Build. Mater 125, 21 28. Available
             from: https://doi.org/10.1016/j.conbuildmat.2016.08.015.
         Criado, M., Ferna ´ndez-Jime ´nez, A., Palomo, A., 2010. Alkali activation of fly ash. Part III:
             Effect of curing conditions on reaction and its graphical description. Fuel 89,
             3185 3192.
         Cyr, M., Idir, R., Poinot, T., 2012. Properties of inorganic polymer (geopolymer) mortars
             made of glass cullet. J. Mater. Sci. 42, 2782 2797. Available from: https://doi.org/
             10.1007/s10853-011-6107-2.
         Davidovits, L., 1991. Inorganic polymeric new materials. J. Therm. Anal. 37 (8),
             1633 1656.
         Davidovits, J., 2015. Geopolymer Chemistry and Applications, fourth ed. Institut
             Ge ´opolyme `re, Saint-Quentin, France.
         Deepika, S., Anand, G., Bahurudeen, A., Santhanam, M., 2017. Construction products with
             sugarcane bagasse ash binder. J. Mater. Civ. Eng. 29 (10), 04017189. Available from:
             https://doi.org/10.1061/(ASCE)MT.1943-5533.0001999 (1-10.
         Degirmenci, F.N., 2018. Utilization of natural and waste pozzolans as an alternative resource
             of geopolymer mortar. Ceramics-Silika ´ty 62 (1), 41 49. Available from: https://doi.org/
             10.13168/cs.2017.0043.
         Detphan, S., Chindaprasirt, P., 2009. Preparation of fly ash and rice husk ash geopolymer.
             Int. J. Miner. Metall. Mater. 16 (6), 720 726. Available from: https://doi.org/10.1016/
             S1674-4799(10)60019-2.
         Dietel, J., Warr, L.N., Bertmer, M., Steudel, A., Grathoff, J.H., Emmerich, K., 2017. The
             importance of specific surface area in the geopolymerization of heated illitic clay. Appl.
             Clay Sci. 139, 99 107. Available from: https://doi.org/10.1016/j.clay.2017.01.001.
   455   456   457   458   459   460   461   462   463   464   465