Page 461 - New Trends in Eco efficient and Recycled Concrete
P. 461

Application of alkali-activated industrial waste                  411


           Djobo, J.N.Y., Elimbi, A., Tchakoute ´, H.K., Kumar, S., 2017. Volcanic ash-based geopoly-
               mer cements/concretes: the current state of the art and perspectives. Environ. Sci. Pollut.
               Res. 24, 4433 4446. Available from: https://doi.org/10.1007/s11356-016-8230-8.
           Douglas, E., Bilodeau, A., Brandstetr, J., Malhotra, V., 1991. Alkali activated ground granulated
               blast-furnace slag concrete: preliminary investigation. Cem. Concr. Res. 21, 101 108.
           Duxson, P., Provis, J.L., 2008. Designing precursors for geopolymer cements. J. Am. Ceram.
               Soc. 91, 3864 3869.
           Duxson, P., Ferna ´ndez-Jime ´nez, A., Provis, J.L., Lukey, G.C., Palomo, A., van Deventer, J.S.,
               2007. Geopolymer technology: the current state of the art. J. Mater. Sci. 42, 2917 2933.
           Erdogan, S.T., 2015. Properties of ground perlite geopolymer mortars. J. Mater. Civ. Eng. 27
               (7), 04014210.
           Farid, S.B.H., 2014. Practicable activated aluminosilicates mortar. Ceram. Int. 40,
               15027 15032. Available from: https://doi.org/10.1016/j.ceramint.2014.06.106.
           Feng, D., Provis, J.L., van Deventer, J.S., 2012. Thermal activation of albite for the synthesis
               of one-part mix geopolymers. J. Am. Ceram. Soc. 95 (2), 565 572.
           Ferna ´ndez-Jime ´nez, A., Puertas, F., 2003. Effect of activator mix on the hydration and
               strength behaviour of alkali-activated slag cements. Adv. Cem. Res. 15, 129 136.
           Ferna ´ndez-Jime ´nez, A., Cristelo, N., Miranda, T., Palomo, A., 2017. Sustainable alkali acti-
               vated materials: precursor and activator derived from industrial wastes. J. Cleaner Prod
               162, 1200 1209. Available from: https://doi.org/10.1016/j.jclepro.2017.06.151.
           Ferone, C., Colangelo, F., Messina, F., Santoro, L., Cioffi, R., 2013. Recycling of pre-
               washed municipal solid waste incinerator fly ash in the manufacturing of low tempera-
               ture setting geopolymer materials. Materials 6, 3420 3427. Available from: https://doi.
               org/10.3390/ma6083420.
           Ferone, C., Liguori, B., Capasso, I., Colangelo, F., Cioffi, R., Cappelletto, E., et al., 2015.
               Thermally treated clay sediments as geopolymer source material. Appl. Clay Sci. 107,
               195 204. Available from: https://doi.org/10.1016/j.clay.2015.01.027.
           Font, A., Borrachero, M.V., Soriano, L., Monzo ´, J., Paya ´, J., 2017a. Geopolymer eco-cellular
               concrete (GECC) based on fluid catalytic cracking catalyst residue (FCC) with addition
               of recycled aluminium foil powder. J. Cleaner Prod 168, 1120 1131. Available from:
               https://doi.org/10.1016/j.jclepro.2017.09.110.
           Font, A., Soriano, L., Moraes, J.C.B., Tashima, M.M., Monzo ´, J., Borrachero, M.V., et al.,
               2017b. A 100% waste-based alkali-activated material by using olive-stone biomass ash
               (OBA) and blast furnace slag (BFS). Mater. Lett. 203, 46 49. Available from: https://
               doi.org/10.1016/j.matlet.2017.05.129.
           Font, A., Soriano, L., Reig, L., Tashima, M., Borrachero, M., Monzo ´, J., Paya ´, J., 2018. Use
               of residual diatomaceous earth as a silica source in geopolymer production. Mater. Lett.
               223, 10 13.
           Gao, X., Yu, Q.L., Lazaro, A., Brouwers, H.J.H., 2017. Investigation on a green olivine
               nano-silica source based activator in alkali activated slag-fly ash blends: reaction kinet-
               ics, gel structure and carbon footprint. Cem. Concr. Res 100, 129 139. Available from:
               https://doi.org/10.1016/j.cemconres.2017.06.007.
           Gao, X., Yu, Q.L., Lazaro, A., Brouwers, H.J.H., 2018. Evaluating an eco-olivine nanosilica as
               an alternative silica source in alkali-activated composites. J. Mater. Civ. Eng. 30 (3),
               04018016. Available from: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002169 (1-11).
           Garcia-Lodeiro, I., Ferna ´ndez-Jime ´nez, A., Palomo, A., 2013. Variation in hybrid cements
               over time. Alkaline activation of fly ash portland cement blends. Cem. Concr. Res. 52,
               112 122.
   456   457   458   459   460   461   462   463   464   465   466