Page 463 - New Trends in Eco efficient and Recycled Concrete
P. 463
Application of alkali-activated industrial waste 413
Ismail, M., Yusuf, T.O., Noruzman, A.H., Hassan, I.O., 2013. Early strength characteristics
of palm oil fuel ash and metakaolin blended geopolymer mortar. Adv. Mater. Res.
690 693, 1045 1048. Available from: https://doi.org/10.4028/www.scientific.net/
AMR.690-693.1045.
Ismail, I., Bernal, S.A., Provis, J.L., San Nicolas, R., Hamdan, S., van Deventer, J.S., 2014.
Modification of phase evolution in alkali-activated blast furnace slag by the incorpo-
ration of fly ash. Cem. Concr. Compos. 45, 125 135.
Istuque, D.B., Reig, L., Moraes, J.C.B., Akasaki, J.L., Borrachero, M.V., Soriano, L., et al.,
2016. Behaviour of metakaolin-based geopolymers incorporating sewage sludge ash
(SSA). Mater. Lett 180, 192 195. Available from: https://doi.org/10.1016/j.
matlet.2016.05.137.
Izquierdo, M., Querol, X., Davidovits, J., Antenucci, D., Nugteren, H., Ferna ´ndez-Pereira, C.,
2009. Coal fly ash-slag-based geopolymers: microstructure and metal leaching. J.
Hazard. Mater. 166 (1), 561 566.
Jamieson, E., McLellan, B., Van Riessen, A., Nikraz, H., 2015. Comparison of embodied
energies of ordinary Portland cement with Bayer-derived geopolymer products. J.
Cleaner Prod 99, 112 118. Available from: https://doi.org/10.1016/j.
jclepro.2015.03.008.
Jamieson, E., Kealley, C.S., Van Riessen, A., Hart, 2016. Optimising ambient setting Bayer
derived fly ash geopolymers. Materials 9, 392. Available from: https://doi.org/10.3390/
ma9050392 (1-11).
Jime ´nez, A.M.F., 2000. Cementos de escorias activadas alcalinamente influencia de las vari-
ables y modelizacio ´n del proceso. Universidad Auto ´noma de Madrid.
Jin, M., Zheng, Z., Sun, Y., Chen, L., Jin, Z., 2016. Resistance of metakaolin-MSWI fly ash
based geopolymer to acid and alkaline environments. J. Non-Crystall. Solids 450,
116 122. Available from: https://doi.org/10.1016/j.jnoncrysol.2016.07.036.
Kalinkin, A.M., Kumar, S., Gurevich, B.I., Alex, T.C., Kalinkina, E.V., Tyukavkina, T.T.,
et al., 2012. Geopolymerization behavior of Cu-Ni slag mechanically activated in air
and in CO 2 atmosphere. Int. J. Miner. Process 112 113, 101 106. Available from:
https://doi.org/10.1016/j.minpro.2012.05.001.
Kamseu, E., Beleuk a ` Moungam, L.M., Cannio, M., Billong, N., Chaysuwan, D., Melo, U.C.,
et al., 2017. Substitution of sodium silicate with rice husk ash-NaOH solution in meta-
kaolin based geopolymer cement concerning reduction in global warming. J. Cleaner
Prod 142, 3050 3060. Available from: https://doi.org/10.1016/j.jclepro.2016.10.164.
Kani, E.N., Allahverdi, A., Provis, J.L., 2012. Efflorescence control in geopolymer binders
based on natural pozzolan. Cem. Concr. Compos. 34 (1), 25 33.
Karakoc, M.B., Turkmen, I., Maras, M.M., Kantarci, F., Demirbo˘ ga, R., Toprak, M.U., 2014.
Mechanical properties and setting time of ferrochrome slag based geopolymer paste and
mortar. Constr. Build. Mater 72, 283 292. Available from: https://doi.org/10.1016/j.
conbuildmat.2014.09.021.
Karakoc, M.B., Turkmen, I., Maras, M.M., Kantarci, F., Demirbo˘ ga, 2016. Sulfate resistance
of ferrochrome slag based geopolymer concrete. Ceram. Int. 42, 1254 1260. Available
from: https://doi.org/10.1016/j.ceramint.2015.09.058.
Karim, M.R., Zain, M.F.M., Jamil, M., Lai, F.C., 2013. Fabrication of a non-cement binder
using slag, palm oil fuel ash and rice husk ash with sodium hydroxide. Constr. Build.
Mater 49, 894 902. Available from: https://doi.org/10.1016/j.conbuildmat.2013.08.077.
Karim, M.R., Hossain, M.M., Zain, M.F.M., Jamil, M., Lai, F.C., 2017. Durability properties
of a non-cement binder made up of pozzolans with sodium hydroxide. Constr. Build.
Mater 138, 174 184. Available from: https://doi.org/10.1016/j.conbuildmat.2017.01.130.