Page 459 - New Trends in Eco efficient and Recycled Concrete
P. 459
Application of alkali-activated industrial waste 409
B˘ ad˘ anoiu, A.I., Al-Saadi, T.H.A., Stoleriu, S., Voicu, G., 2015b. Preparation and characteri-
zation of foamed geopolymers from waste glass and red mud. Constr. Build. Mater 84,
284 293. Available from: https://doi.org/10.1016/j.conbuildmat.2015.03.004.
Bakharev, T., Sanjayan, J., Cheng, Y.-B., 2000. Effect of admixtures on properties of alkali-
activated slag concrete. Cem. Concr. Res. 30, 1367 1374.
Ban, C., Ken, P.W., Ramli, M., 2017. Mechanical and durability performance of novel self-
activating geopolymer mortars. Procedia Eng 171, 564 571. Available from: https://doi.
org/10.1016/jproeng.2017.01.374.
Banfill, P., 2005. The Rheology of Fresh Mortar—A Review. Anais, Floriano ´polis, Vi Sbta,
pp. 73 82.
Barbosa, V.F., MacKenzie, K.J., Thaumaturgo, C., 2000. Synthesis and characterisation of
materials based on inorganic polymers of alumina and silica: sodium polysialate poly-
mers. Int. J. Inorg. Mater. 2, 309 317.
Barbosa, V.F., MacKenzie, K.J., 2003. Thermal behaviour of inorganic geopolymers and
composites derived from sodium polysialate. Mater. Res. Bull. 38 (2), 319 331.
Baykara, H., Cornejo, M.H., Murillo, R., Gavilanes, A., Paredes, C., Elsen, J., 2017.
Preparation, characterization and reaction kinetics of Green cement: ecuadorian natural
mordenite-based geopolymers. Mater. Struct 50, 188. Available from: https://doi.org/
10.1617/s11527-017-1057-z (1 12).
Belmokhar, N., Ammari, M., Brigui, J., Ben allal, L., 2017. Comparison of the microstructure
and the compressive strength of two geopolymers derived from metakaolin and an
industrial sludge. Constr. Build. Mater 146, 621 629. Available from: https://doi.org/
10.1016/j.conbuildmat.2017.04.127.
Beltra ´n, M.G., Agrela, F., Barbudo, A., Ayuso, J., Ramı ´rez, A., 2014. Mechanical and dura-
bility properties of concretes manufactured with biomass bottom ash and recycled coarse
aggregates. Constr. Build. Mater. 72, 231 238.
Bhutta, M.A.R., Ariffin, N.F., Hussin, M.W., Lim, N.H.A.S., 2013. Sulfate and sulfuric acid resis-
tance of geopolymer mortars using waste blended ash. Jurnal Teknologi 61 (3), 216 223.
Bignozzi, M.C., Manzi, S., Lancellotti, I., Kamseu, E., Barbieri, L., et al., 2013. Mix-design
and characterization of alkali activated materials base don metakaolin and ladle slag.
Appl. Clay Sci. 73, 78 85. Available from: https://doi.org/10.1016/j.clay.2012.09.015.
Boca-Santa, R.A.A., Bernardin, A.M., Riella, H.G., Kuhnen, N.C., 2013. Geopolymer synthe-
tized from bottom coal ash and calcined paper sludge. J. Cleaner Prod 57, 302 307.
Available from: https://doi.org/10.1016/j.jclepro.2013.05.017.
Bouzo ´n, N., Paya ´, J., Borrachero, M.V., Soriano, L., Tashima, M.M., Monzo ´, J., 2014.
Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders. Mater.
Lett 115, 72 74. Available from: https://doi.org/10.1016/j.matlet.2013.10.001.
Brough, A., Atkinson, A., 2002. Sodium silicate-based, alkali-activated slag mortars: Part I.
Strength, hydration and microstructure. Cem. Concr. Res. 32, 865 879.
Buchwald, A., Schulz, M., 2005. Alkali-activated binders by use of industrial by-products.
Cem. Concr. Res 35, 968 973. Available from: https://doi.org/10.1016/j.
cemconres.2004.06.019.
Cabrera-Fuentes, A.B., Fernandez-Jimenez, A., Palomo, A., 2011. Alkaline activation of
blended fly ash and cement kiln dust. In: Palomo, A., Zaragoza, A., Lo ´pez-Agu ¨i, J.C.
(Eds.), Proceedings- XIII International Congress on the Chemistry of Cement. Madrid
CSIC.
Carvalho, J., Carvalho, P., Pinto, A.T., Labrincha, J.A., 2008. Activation of mixtures of natu-
ral clay and glass cullet rejects. Clay. Miner. 43, 657 667. Available from: https://doi.
org/10.1180/claymin.2008.043.4.02.