Page 462 - New Trends in Eco efficient and Recycled Concrete
P. 462
412 New Trends in Eco-efficient and Recycled Concrete
Garcia-Lodeiro, I., Ferna ´ndez-Jimenez, A., Pena, P., Palomo, A., 2014. Alkaline activation of
synthetic aluminosilicate glass. Ceram. Int. 40, 5547 5558.
Garcia-Lodeiro, I., Palomo, A., Ferna ´ndez-Jime ´nez, A., 2015. Crucial insights on the mix
design of alkali-activated cement-based binders. Handbook of Alkali-Activated
Cements, Mortars and Concretes. Elsevier, pp. 49 73.
Geng, J., Zhou, M., Zhang, T., Wang, W., Wang, T., Zhou, X., et al., 2017. Preparation of
blended geopolymer from red mud and coal gangue with mechanical co-grinding preac-
tivation. Mater. Struct. 50, 109. Available from: https://doi.org/10.1617/s11527-016-
0967-5 (1 11).
Geraldo, R.H., Fernandes, L.F.R., Camarini, G., 2017. Water treatment sludge and rice husk
ash to sustainable geopolymer production. J. Clean. Prod. 149, 146 155. Available
from: https://doi.org/10.1016/j.jclepro.2017.02.076.
Gluth, G.J.G., Lehmann, C., Rubner, K., Ku ¨hne, H.-C., 2013. Geopolymerization of a silica
residue from waste treatment of chlorosilane production. Mater. Struct. 46, 1291 1298.
Available from: https://doi.org/10.1617/s11527-012-9972-5.
Guo, X., Shi, H., 2010. Use of heat-treated water treatment residuals in fly ash-based geopo-
lymers. J. Am. Ceram. Soc 93 (1), 272 278. Available from: https://doi.org/10.1111/
j.1551-2916.2009.03331.x.
Haijjaji, W., Andrejkovicova, S., Zanelli, C., Alshaaer, M., Dondi, M., Labrincha, J.A., et al.,
2013. Composition and technological properties of geopolymers base don metakaolin
and red mud. Mater. Des. 52, 648 654. Available from: https://doi.org/10.1016/j.
matdes.2013.05.058.
Hairi Md., S.N., Jameson, G.N.L., Rogers, J.J., Mackenzie, K.J.D., 2015. Synthesis and prop-
erties of inorganic polymers (geopolymers) derived from Bayer process residue (red
mud) and bauxite. J. Mater. Sci 50, 7713 7724. Available from: https://doi.org/
10.1007/s10853-015-9338-9.
Hanjitsuwan, S., Phoongernkham, T., Li, L.-Y., Damrongwiriyanupap, N., Chindaprasirt, P.,
2018. Strength development and durability of alkali-activated fly ash mortar. Constr. Build.
Mater 162, 714 723. Available from: https://doi.org/10.1016/j.conbuildmat.2017.12.034.
Hansen, T., 1985. Recycled aggregates and recycled aggregate concrete, Second State-of-the-
Art Report, Technical University of Denmark. Technical Report.
Hao, H.C., Lin, K.-L., Wang, D.Y., Chao, S.-J., Shiu, H.-S., Cheng, T.-W., et al., 2013.
Utilization of solar panel waste glass for metakaolinite-based geopolymer synthesis.
Environ. Progr. Sustainable Energy 32 (3), 797 803. Available from: https://doi.org/
10.1002/ep.11693.
He, J., Jie, Y., Zhang, J., Yu, Y., Zhang, G., 2013. Synthesis and characterization of red mud
and rice husk ash-based geopolymer composites. Cem. Concr. Compos. 37, 108 118.
Available from: https://doi.org/10.1016/j.cemconcomp.2012.11.010.
Huseien, G.F., Mirza, J., Ismail, M., Hussin, M.W., 2016. Influence of different curing tem-
peratures and alkali activators on properties of GBFS geopolymer mortars containing fly
ash and palm-oil fuel ash. Constr. Build. Mater 125, 1229 1240. Available from:
https://doi.org/10.1016/j.conbuildmat.2016.08.153.
Huynh, T.-P., Hwang, C.-L., Lin, K.-L., 2017. Performance and microstructure characteristics
of the fly ash and residual rice husk ash-based geopolymers prepared at various solid-to-
liquid ratios and curing temperatures. Environ. Progr. Sustainable Energy 36 (1),
83 92. Available from: https://doi.org/10.1002/ep.12445.
Hwang, C.H.-L., Huynh, T.-P., 2015. Effect of alkali-activator and rice husk ash content on
strength development of fly ash and residual rice husk ash-bases geopolymers. Constr.
Build. Mater 101, 1 9. Available from: https://doi.org/10.1016/j.conbuildmat.2015.10.025.