Page 466 - New Trends in Eco efficient and Recycled Concrete
P. 466
416 New Trends in Eco-efficient and Recycled Concrete
Moraes, J.C.B., Tashima, M.M., Akasaki, J.L., Melges, J.L.P., Monzo ´, J., Borrachero, M.V.,
et al., 2016. Increasing the sustainability of alkali-activated binders: the use of sugar
cane Straw ash (SCSA). Constr. Build. Mater 124, 148 154. Available from: https://
doi.org/10.1016/j.conbuildmat.2016.07.090.
Moraes, J.C.B., Tashima, M.M., Akasaki, J.L., Melges, J.L.P., Monzo ´, J., Borrachero, M.V.,
et al., 2017. Effect of sugar cane Straw ash (SCSA) as solid precursor and the alkaline
activator composition on alkali-activated binders based on blast furnace slag (BFS).
Constr. Build. Mater 144, 214 224. Available from: https://doi.org/10.1016/j.
conbuildmat.2017.03.166.
Moraes, J.C.B., Tashima, M.M., Melges, J.L.P., Akasaki, J.L., Monzo ´, J., Borrachero, M.V.,
et al., 2018. Optimum use of sugar cane straw ash in alkali-activated binders based on
blast furnace slag. J. Mater. Civ. Eng. 30, 04018084. Available from: https://doi.org/
10.1061/(ASCE)MT.1943-5533.0002261.
Murri, A.,N., Rickard, W.D.A., Bignozzi, M.C., van Riessen, A., 2013. High temperature
behaviour of ambient cured alkali-activated materials based on ladle slag. Cem. Concr.
Res 43, 51 61. Available from: https://doi.org/10.1016/j.cemconres.2012.09.011.
Nath, P., Sarker, P., 2014. Effect of GGBS on setting, workability and early strength proper-
ties of fly ash geopolymer concrete cured in ambient condition. Const. Build. Mater. 66,
163 171. Available from: https://doi.org/10.1016/j.conbuildmat.2014.05.080.
Nath, S.K., Kumar, S., 2017. Reaction kinetics, microstructure and strength behavior of alkali
activated silico-manganese (SiMn) slag-fly ash blends. Constr. Build. Mater 147,
371 379. Available from: https://doi.org/10.1016/j.conbuildmat.2017.04.174.
Navarro, N., Zornoza, E., Garce ´s, P., Sa ´nchez, I., Alcocel, E.G., 2017. Optimization of the
alkali activation conditions of ground granulated SiMn slag. Constr. Build. Mater 150,
781 791. Available from: https://doi.org/10.1016/j.conbuildmat.2017.06.064.
Nazari, A., Bagheri, A., Riahi, S., 2011. Properties of geopolymer with seeded fly ash and
rice husk bark ash. Mater. Sci. Eng. A 528, 7395 7401. Available from: https://doi.org/
10.1016/j.msea.2011.06.027.
Nazari, A., Riahi, S., Bagheri, A., 2012. Designing water resistant lightweight geopolymers
produced from waste materials. Mater. Des. 35, 296 302. Available from: https://doi.
org/10.1016/j.matdes.2011.09.016.
Nazer, A., Paya ´, J., Borrachero, M.V., Monzo ´, J., 2016a. Caracterizacio ´n de escorias de cobre
de fundiciones chilenas del siglo XIX. Revista de Metalurgia 52 (4), e83. Available
from: https://doi.org/10.3989/revmetalm.083.
Nazer, A., Paya ´, J., Borrachero, M.V., Monzo ´, J., 2016b. Use of ancient copper slags in
Portland cement and alkali activated cement matrices. J. Environ. Manage. 167,
115e123. Available from: https://doi.org/10.1016/j.jenvman.2015.11.024.
Nie, Q., Hu, W., Ai, W., Huang, B., Shu, X., He, Q., 2016. Strength properties of geopoly-
mers derived from original and desulfurized red mud cured at ambient temperature.
Construct. Build. Mater 125, 905 911. Available from: https://doi.org/10.1016/j.
conbuildmat.2016.08.144.
Niklioc, I., Markovic, S., Jankovic-Castvan, I., Radmilovic, V.V., Karanovic, L.J., Babic, B.,
et al., 2016. Modification of mechanical and thermal properties of fly ash-based geopo-
lymer by the incorporation of steel slag. Mater. Lett 76, 301 305. Available from:
https://doi.org/10.1016/j.matlet.2016.04.121.
Nikolov, A., Rostovsky, Y., Nugteren, H., 2017. Geopolymer materials based on natural zeo-
lite. Case Stud. Constr. Mater. 6, 198 205. June.