Page 471 - New Trends in Eco efficient and Recycled Concrete
P. 471

Application of alkali-activated industrial waste                  421


           Tabsh, S.W., Abdelfatah, A.S., 2009. Influence of recycled concrete aggregates on strength
               properties of concrete. Constr. Build. Mater. 23, 1163 1167.
           Tattershall, G., Banfill, P., 1983. The Rheology of Fresh Concrete. Pitman Advanced
               Publishing Program, New York, NY.
           Tashima, M.M., Soriano, L., Borrachero, M.V., Monzo ´, J., Cheeseman, C.R., Paya ´, J., 2012a.
               Alkali activation of vitreous calcium aluminosilicate derived from glass fiber waste. J.
               Sustainable Cem. Bases Mater 1 (3), 83 93. Available from: https://doi.org/10.1080/
               21650373.2012.742610.
           Tashima, M.M., Akasaki, J.L., Castaldelli, V.N., Soriano, L., Monzo ´, J., Paya ´, J., et al.,
               2012b. New geopolymeric binder based on fluid catalytic cracking catalyst residues
               (FCC). Mater. Lett . Available from: https://doi.org/10.1016/j.matlet.2012.04.051.
           Tashima, M.M., Soriano, L., Borrachero, M.V., Monzo ´, J., Paya ´, J., 2013a. Effect of curing
               time on microstructure and mechanical strength development of alkali activated binders
               based on vitreous calcium aluminosilicate (VCAS). Bull. Mater. Sci 36 (2), 245 249.
               Available from: https://doi.org/10.1007/s12034-013-0466-z.
           Tashima, M.M., Soriano, L., Monzo ´, J., Borrachero, M.V., Paya ´, J., 2013b. Novel geopoly-
               meric material cured at room temperature. Adv. Appl. Ceram 112 (4), 179 183.
               Available from: https://doi.org/10.1179/1743676112Y.0000000056.
           Tashima, M.M., Akasaki, J.L., Melges, J.L.P., Soriano, L., Monzo ´, J., Paya ´, J., et al., 2013c.
               Alkali activated Materials based on fluid catalytic cracking catalyst residue (FCC):
               Influence of SiO 2 /Na 2 O and H 2 O/FCC ratio on mechanical strength and microstructure.
               Fuel 108, 833 839. Available from: https://doi.org/10.1016/j.fuel.2013.02.052.
           Tashima, M.M., Soriano, L., Akasaki, J.L., Monzo ´, J., Paya ´, J., Borrachero, M.V., 2014.
               Spent FCC catalyst for preparing alkali-activated binders: an opportunity for a high-
               degree valorization. Key Eng. Mater 600, 709 716. Available from: https://doi.org/
               10.4028/www.scientific.net/KEM.600.709.
           Tashima, M.M., Reig, L., Santini Jr., M.A., Moraes, J.C.B., Akasaki, J.L., et al., 2017.
               Compressive strength and microstructure of alkali-activated blast furnace slag/sewage
               sludge ash (GGBS/SSA) blends cured at room temperature. Waste Biomass Valorization
               8, 1441 1451. Available from: https://doi.org/10.1007/s12649-016-9659-1.
           Tchakoute ´, H.K., Ru ¨scher, C.H., Kong, S., Ranjbar, N., 2016a. Synthesis of sodium waste glass
               from white rice husk ash as an activator to produce metakaolin-based geopolymer cements.
               J. Build. Eng 6, 252 261. Available from: https://doi.org/10.1016/j.jobe.2016.04.007.
           Tchakoute ´, H.K., Ru ¨scher, C.H., Kong, S., Kamseu, E., Leonelli, C., 2016b. Comparison of
               metakaolin-based geopolymer cements from commercial sodium waterglass and sodium
               waterglass from rice husk ash. J. Sol-Gel Sci. Technol. 78, 492 506. Available from:
               https://doi.org/10.1007/s10971-016-3983-6.
           Tchakoute ´, H.K., Ru ¨scher, C.H., Kong, S., Kamseu, E., Leonelli, C., 2016c. Geopolymer bin-
               ders from metakaolin using sodium waterglass from waste glass and rice husk ash as
               alternative activators: a comparative study. Constr. Build. Mater 114, 276 289.
               Available from: https://doi.org/10.1016/j.conbuildmat.2016.03.184.
           Tchakoute ´, H.K., Ru ¨scher, C.H., Kong, S., Kamseu, E., Leonelli, C., 2017a. Thermal behav-
               ior of metakaolin-based geopolymer cements using sodium waterglass from rice husk
               ash and waste glass as alternative activators. Waste Biomass Valorization 8, 573 584.
               Available from: https://doi.org/10.1007/s12649-016-9653-7.
           Tchakoute ´, H.K., Ru ¨scher, C.H., Hinsch, M., Djobo, N.Y., Kamseu, E., Leonelli, C., 2017b.
               Utilization of sodium waterglass from sugar cane bagasse ash as a new alternative hardener
               for producing metakaolin-based geopolymer cement. Chemie der Erde   Geochemistry 77,
               257 266. Available from: https://doi.org/10.1016/j.chemer.2017.04.003.
   466   467   468   469   470   471   472   473   474   475   476