Page 78 - New Trends in Eco efficient and Recycled Concrete
P. 78
Biomass fly ash and biomass bottom ash 53
References
Albitar, M., Ali, M.M., Visintin, P., 2018. Evaluation of tension-stiffening, crack spacing and
crack width of geopolymer concretes. Constr. Build. Mater. 160, 408 414.
Arenas, C., Leiva, C., Vilches, L.F., Cifuentes, H., 2013. Use of co-combustion bottom ash
to design an acoustic absorbing material for highway noise barriers. Waste Manage. 33
(11), 2316 2321.
ASTM C618, 2017. Standard Specification for Coal Fly Ash and Raw or Calcined Natural
Pozzolan for Use in Concrete. American Society for Testing and Materials. West
Conshohocken, PA, USA, ASTM International; 2003.
Barbosa, T.R., Foletto, E.L., Dotto, G.L., Jahn, S.L., 2018. Preparation of mesoporous geopo-
lymer using metakaolin and rice husk ash as synthesis precursors and its use as potential
adsorbent to remove organic dye from aqueous solutions. Ceram. Int. 44 (1), 416 423.
Bashar, I.I., Alengaram, U.J., Jumaat, M.Z., Islam, A., Santhi, H., Sharmin, A., 2016.
Engineering properties and fracture behaviour of high volume palm oil fuel ash based
fibre reinforced geopolymer concrete. Constr. Build. Mater. 111, 286 297.
Beltra ´n, M.G., Agrela, F., Barbudo, A., Ayuso, J., Ramı ´rez, A., 2014. Mechanical and dura-
bility properties of concretes manufactured with biomass bottom ash and recycled coarse
aggregates. Constr. Build. Mater. 72, 231 238.
Behak, L., Peres, W., 2008. Characterization of a material comprised of sandy soil, rice husk
ash and potentially useful lime in pavements. Revista Ingenierı ´a de Construccio ´n 23 (1),
34 41.
Berra, M., Mangialardi, T., Paolini, A.E., 2015. Reuse of woody biomass fly ash in cement-
based materials. Constr. Build. Mater. 76, 286 296.
BS EN 206-1, 2008. Concrete. Specification, performance, production and conformity.
Cabrera, M., Galvin, A.P., Agrela, F., Carvajal, M.D., Ayuso, J., 2014. Characterisation and
technical feasibility of using biomass bottom ash for civil infrastructures. Constr. Build.
Mater. 58, 234 244.
Cabrera, M., Galvin, A.P., Agrela, F., Beltran, M.G., Ayuso, J., 2016. Reduction of leaching
impacts by applying biomass bottom ash and recycled mixed aggregates in structural
layers of roads. Materials 9 (4), 228.
Carrasco, B., Cruz, N., Terrados, J., Corpas, F.A., Pe ´rez, L., 2014. An evaluation of bottom ash
from plant biomass as a replacement for cement in building blocks. Fuel 118, 272 280.
Cuenca, J., Rodrı ´guez, J., Martı ´n-Morales, M., Sa ´nchez-Rolda ´n, Z., Zamorano, M., 2013.
Effects of olive residue biomass fly ash as filler in self-compacting concrete. Constr.
Build. Mater. 40, 702 709.
Dahl, O., Nurmesniemi, H., Poykio, R., Watkins, G., 2009. Comparison of the characteristics of
bottom ash and fly ash from a medium-size (32 MW) municipal district heating plant inciner-
ating forest residues and peat in a fluidized-bed boiler. Fuel Process Technol. 90, 871 878.
Da Luz Garcia, M., Sousa-Coutinho, J., 2013. Strength and durability of cement with forest
waste bottom ash. Constr. Build. Mater. 41, 897 910.
Davidovits, J., 1991. Geopolymers: inorganic polymeric new materials. J. Therm. Anal.
Calorim. 37 (8), 1633 1656.
Demirba¸s, A., 2001. Biomass resource facilities and biomass conversion processing for fuels
and chemicals. Energy Convers. Manage. 42 (11), 1357 1378.
Duxson, P., Ferna ´ndez-Jime ´nez, A., Provis, J.L., Lukey, G.C., Palomo, A., Van Deventer, J.S.J.,
2007. Geopolymer technology: the current state of the art. J. Mater. Sci. 42 (9),
2917 2933.