Page 81 - New Trends in Eco efficient and Recycled Concrete
P. 81
56 New Trends in Eco-efficient and Recycled Concrete
Masia ´, A.T., Buhre, B.J.P., Gupta, R.P., Wall, T.F., 2007. Characterising ash of biomass and
waste. Fuel Proc. Technol. 88 (11), 1071 1081.
Matias, D., De Brito, J., Rosa, A., Pedro, D., 2013. Mechanical properties of concrete pro-
duced with recycled coarse aggregates influence of the use of superplasticizers. Constr.
Build. Mater. 44, 101 109.
Michalik, M., Wilczy´ nska-Michalik, W., 2012. Mineral and chemical composition of biomass
ash. In: Conference: European Mineralogical Conference, At Frankfurt, Germany.
Modolo, R.C.E., Silva, T., Senff, L., Tarelho, L.A.C., Silva, L., 2015. Bottom ash from biomass
combustion in BFB and its use in adhesive-mortars. Fuel Proc. Technol. 129, 192 202.
Modolo, R.C.E., Ferreira, V.M., Tarelho, L.A., Labrincha, J.A., Senff, L., Silva, L., 2013.
Mortar formulations with bottom ash from biomass combustion. Constr. Build. Mater.
45, 275 281.
Modolo, R.C.E., Tarelho, L.A.C., Teixeira, E.R., Ferreira, V.M., Labrincha, J.A., 2014.
Treatment and use of bottom bed waste in biomass fluidized bed combustors. Fuel
Process. Technol. 125, 170 181.
Mohtasham, J., 2015. Peer review under responsibility of the Euro-Mediterranean Institute
for Sustainable Development (EUMISD). Energy Procedia 74, 1289 1297.
Muˇ zek, M.N., Svilovi´ c, S., Zeli´ c, J., 2014. Fly ash-based geopolymeric adsorbent for copper
ion removal from wastewater. Desalin. Water Treat. 52 (13-15), 2519 2526.
Naik, T.R., Kraus, R.N., 2003. A new source of pozzolanic material. Concr. Int. 25 (12),
55 62.
Novais, R.M., Ascensa ˜o, G., Tobaldi, D.M., Seabra, M.P., Labrincha, J.A., 2018. Biomass fly
ash geopolymer monoliths for effective methylene blue removal from wastewaters. J.
Cleaner Prod. 171, 783 794.
Nuaklong, P., Sata, V., Chindaprasirt, P., 2016. Influence of recycled aggregate on fly ash
geopolymer concrete properties. J. Cleaner Prod. 112, 2300 2307.
Obernberger, I., Supancic, K., 2009. Possibilities of ash utilisation from biomass combustion
plants. In: Proceedings of the 17th European Biomass conference & Exhibition.
Hamburg: ETA Renewable Energies.
Palomo, A., Palacios, M., 2003. Alkali-activated cementitious materials: alternative matrices
for the immobilisation of hazardous wastes: part II. Stabilisation of chromium and lead.
Cem. Concr. Res. 33 (2), 289 295.
Park, S.B., Seo, D.S., Lee, J., 2005. Studies on the sound absorption characteristics of porous
concrete based on the content of recycled aggregate and target void ratio. Cem. Concr.
Res. 35 (9), 1846 1854.
Park, Y., Abolmaali, A., Kim, Y.H., Ghahremannejad, M., 2016. Compressive strength of fly
ash-based geopolymer concrete with crumb rubber partially replacing sand. Constr.
Build. Mater. 118, 43 51.
Part, W.K., Ramli, M., Cheah, C.B., 2015. An overview on the influence of various factors
on the properties of geopolymer concrete derived from industrial by-products. Constr.
Build. Mater. 77, 370 395.
Picco, D., 2010. Technical assistance for the development and improvement of technologies,
methodologies and tools for enhanced use of agricultural biomass residues. Energy Plant
Report. Central European Initiative, Italy.
prEN 450-1, 2012. Fly Ash for Concrete Part 1: Definitions, Specifications and
Conformity Criteria.
Provis, J.L., Van Deventer, J.S.J. (Eds.), 2009. Geopolymers: Structures, Processing,
Properties and Industrial Applications. Woodhead Publishing Limited, Abingdon.