Page 82 - New Trends in Eco efficient and Recycled Concrete
P. 82

Biomass fly ash and biomass bottom ash                             57


           Puertas, F., Martı ´nez-Ramı ´rez, S., Alonso, S., Vazquez, T., 2000. Alkali-activated fly ash/
               slag cements: strength behaviour and hydration products. Cem. Concr. Res. 30 (10),
               1625 1632.
           Rahier, H., Van Mele, B., Wastiels, J., 1996. Low-temperature synthesized aluminosilicate
               glasses. 2. Rheological transformations during low-temperature cure and high-
               temperature Properties of a Model-Compound. J. Mater. Sci. 31 (1), 80 85.
           Rajamma, R., Ball, R.J., Tarelho, L.A., Allen, G.C., Labrincha, J.A., Ferreira, V.M., 2009.
               Characterisation and use of biomass fly ash in cement-based materials. J. Hazard.
               Mater. 172 (2), 1049 1060.
           Rajamma, R., 2011. Biomass fly ash incorporation in cement based materials. Doctoral
               Dissertation, Universidade de Aveiro (Portugal).
           Ramujee, K., PothaRaju, M., 2017. Mechanical properties of geopolymer concrete compo-
               sites. Mater. Today: Proc. 4 (2), 2937 2945.
           Rashad, A.M., 2013. Properties of alkali-activated fly ash concrete blended with slag. Iran J.
               Mater. Sci. Eng. 10 (1), 57 64.
           Richaud, R., Herod, A.A., Kandiyoti, R., 2004. Comparison of trace element contents in low-
               temperature and high-temperature ash from coals and biomass. Fuel 83 (14),
               2001 2012.
           RILEM, F.I.P., 1983. Manual of Lightweight Aggregate Concrete, second ed Surrey
               University Press, London.
           Rosales, J., Cabrera, M., Beltra ´n, M.G., Lo ´pez, M., Agrela, F., 2017. Effects of treatments on
               biomass bottom ash applied to the manufacture of cement mortars. J. Cleaner Prod. 154,
               424 435.
           Sklivaniti, V., Tsakiridis, P.E., Katsiotis, N.S., Velissariou, D., Pistofidis, N., Papageorgiou,
               D., et al., 2017. Valorisation of woody biomass bottom ash in Portland cement: a char-
               acterization and hydration study. J. Environ. Chem. Eng. 5 (1), 205 213.
           Sofi, M., Van Deventer, J.S.J., Mendis, P.A., Lukey, G.C., 2007. Engineering properties of
               inorganic polymer concretes (IPCs). Cem. Concr. Res. 37 (2), 251 257.
           Suksiripattanapong, C., Kua, T.A., Arulrajah, A., Maghool, F., Horpibulsuk, S., 2017.
               Strength and microstructure properties of spent coffee grounds stabilized with rice husk
               ash and slag geopolymers. Constr. Build. Mater. 146, 312 320.
           Sun, T., Chen, J., Lei, X., Zhou, C., 2014. Detoxification and immobilization of chromite ore
               processing residue with metakaolin-based geopolymer. J. Environ. Chem. Eng. 2 (1),
               304 309.
           Tennakoon, C., Shayan, A., Sanjayan, J.G., Xu, A., 2017. Chloride ingress and steel corro-
               sion in geopolymer concrete based on long term tests. Mater. Des 116, 287 299.
           Van Loo, S., Koppejan, J., 2008. The Handbook of Biomass Combustion and Co-firing.
               Earthscan, London, ,https://www.researchgate.net/publication/237079687..
           Vamvuka, D., Kakaras, E., 2011. Ash properties and environmental impact of various bio-
               mass and coal fuels and their blends. Fuel Proc. Technol. 92 (3), 570 581.
           Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G., 2010. An overview of the chemi-
               cal composition of biomass. Fuel 89 (5), 913 933.
           Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G., 2013a. An overview of the com-
               position and application of biomass ash. Part 1. Phase-mineral and chemical composition
               and classification. Fuel 105, 40 76.
           Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G., 2013b. An overview of the com-
               position and application of biomass ash: part 2. Potential utilisation, technological and
               ecological advantages and challenges. Fuel 105, 19 39.
   77   78   79   80   81   82   83   84   85   86   87