Page 101 - Numerical Analysis Using MATLAB and Excel
P. 101

Chapter 3  Sinusoids and Phasors



                                                              –
                                                     e – jθ  =  cos θ jsin θ                           (3.74)

               are known as the Euler’s identities.
               Multiplying (3.73) by the real positive constant C we get:


                                               Ce  jθ  =  Ccos θ +  jCsin θ                            (3.75)

               This expression represents a phasor, say a + jb , and thus


                                                    Ce  jθ  =  a +  jb                                 (3.76)
               Equating real and imaginary parts in (3.75) and (3.76), we get

                                              a =  Ccos θ  and  b =  Csin θ                            (3.77)

               Squaring and adding the expressions in (3.77), we get

                                        2
                                   2
                                                                     2
                                                                                   )
                                                                      (
                                  a +  b =  (  Ccos θ )  2 + (  Csin θ )  2  =  C cos 2 θ +  sin 2 θ =  C 2
               Then,
                                                               2
                                                          2
                                                        C =   a +  b 2
               or
                                                            2    2
                                                     C =   a +  b                                      (3.78)
               Also, from (3.77)
                                                     b    Csin θ
                                                     -
                                                     -- =  --------------- =  tan θ
                                                     a   Ccos  θ
               or

                                                               b
                                                               --
                                                                -
                                                      θ =  tan – 1 ⎛⎞                                  (3.79)
                                                              ⎝⎠
                                                               a
               Therefore, to convert a phasor from rectangular to exponential form, we use the expression
                                                                  ⎛
                                                                     1 b ⎞
                                                                    –
                                                          2
                                                              2
                                                                  ⎝
                                              a + jb =  a +  b e  jtan  -- a ⎠  -                      (3.80)
               To convert a phasor from exponential to rectangular form, we use the expressions
                                               Ce jθ  =  Ccos θ + jCsin θ
                                               Ce –  jθ  =  Ccos θ jCsin θ                             (3.81)
                                                               –





               3−14                             Numerical Analysis Using MATLAB® and Excel®, Third Edition
                                                                             Copyright © Orchard Publications
   96   97   98   99   100   101   102   103   104   105   106