Page 107 - Numerical Analysis Using MATLAB and Excel
P. 107

Chapter 3  Sinusoids and Phasors


                                                              Im
                                                         210°
                                                 −1.73             Re
                                                        30°
                                                              −150°(Measured
                                                         2          Clockwise)
                                                              −1

                                                                         ∠
                                            Figure 3.16. The components of 2 – 150°
                   Then,
                                        j – 150°
                                                 (
                                                                                      )
                                                                   )
                                                                         (
                           ∠
                          2 – 150° =  2e     =  2 cos 150° –  jsin 150° =  2 – 0.866 –  j0.5 =  – 1.73 –  j
                  Check with MATLAB:
                   r = −2; theta = 30/pi; [x,y] = pol2cart(theta*180/pi,r)
                   x =

                      -1.7578
                  y =

                     -0.9541
                  Check with the Simulink model of Figure 3.17:















                                           Figure 3.17. Simulink model for Example 3.9



               Note: The rectangular form is most useful when we add or subtract phasors; however, the expo-
               nential and polar forms are most convenient when we multiply or divide phasors.

               To multiply two phasors in exponential (or polar) form, we multiply the magnitudes and we add
               the phase angles, that is, if
                                                                        ∠
                                                        ∠
                                                 A =  M θ  and  B =   N φ
               then,
                                                             jθ   jφ         j θ (  φ + )
                                   AB =   MN (  θ∠  φ + )  =  Me  Ne  =  MNe                           (3.83)






               3−20                             Numerical Analysis Using MATLAB® and Excel®, Third Edition
                                                                             Copyright © Orchard Publications
   102   103   104   105   106   107   108   109   110   111   112