Page 235 - Numerical Analysis Using MATLAB and Excel
P. 235

Chapter 6  Fourier, Taylor, and Maclaurin Series



                                  2  π A           2A   π           2A 1         t     ⎞  π
                                                                       ⎛
                                                     2∫
                                                                                  -
                             b =  --- ∫ 0  ----tsin nt t =  -------  0  tsin nt t =  ------- ----- sin nt –  -- cos nt ⎠
                                                               d
                                              d
                                                                    π ⎝
                              n
                                                    π
                                       π
                                  π
                                                                        n
                                                                                 n
                                                                      2
                                                                         2
                                   2A                  π   2A                            0             (6.37)
                                =  ----------- sin(  nt –  ntcos nt )  =  ----------- sin(  nπ –  nπcos nπ )
                                  n π                  0   n π
                                   2 2
                                                            2 2
                We observe that:
                1.If n =  even , sin nπ =  0  and  cos nπ =  1 . Then, (6.37) reduces to
                                                         2A
                                                                 )
                                                   b =  ----------- –( n π  nπ =  – 2A
                                                                       -------
                                                    n
                                                                       nπ
                                                          2 2
                   that is, the even harmonics have negative coefficients.
                2. If n =  odd , sin nπ =  , 0 cos nπ =  – 1 . Then,
                                                    b =   ----------- nπ( 2A  )  =  2A
                                                                      -------
                                                     n
                                                                      nπ
                                                          n π
                                                           2 2
                  that is, the odd harmonics have positive coefficients.
                Thus, the trigonometric Fourier series for the sawtooth waveform with odd symmetry is
                            2A ⎛       1         1         1           ⎞    2A        n – 1
                                                                                        1
                                                            -
                                                                                          -
                                                  -
                                        -
                     ft() =  ------- sin ωt –  -- sin 2ωt +  -- sin 3ωt –  -- sin 4ωt +  … =  ------- ∑  – (  1 )  -- sin nωt  (6.38)
                             π ⎝       2         3         4           ⎠     π            n
                Example 6.5
                Find the trigonometric Fourier series of the triangular waveform of Figure 6.17. Assume ω =  . 1
                                                                        T
                                                           A
                                    −2π
                                                −π            0   π/2   π           2π        ωt

                                                          −A

                                         Figure 6.17. Triangular waveform for Example 6.5

                Solution:
                This waveform is an odd function and has half−wave symmetry; then, the trigonometric Fourier
                series will contain sine terms only with odd harmonics. Accordingly, we only need to evaluate the
                b n  coefficients. We will choose the limits of integration from   to π 2⁄  , and will multiply the
                                                                              0


               6−18                             Numerical Analysis Using MATLAB® and Excel®, Third Edition
                                                                              Copyright © Orchard Publications
   230   231   232   233   234   235   236   237   238   239   240