Page 238 - Numerical Analysis Using MATLAB and Excel
P. 238

Waveforms in Trigonometric Form of Fourier Series


                Next, we can evaluate all the a n  coefficients, except , from (6.44).
                                                                   a
                                                                    1
                                                                                                        ⁄
                                      a
                First, we will evaluate   to obtain the DC  value. By substitution of n =  0 , we get a =  2A π
                                       0
                                                                                                 0
                Therefore, the DC  value is
                                                       1      A
                                                       -
                                                       --a =  ----                                     (6.45)
                                                       2  0   π
                We cannot use (6.44) to obtain the value of  ; therefore, we will evaluate the integral
                                                           a
                                                            1
                                                         A   π
                                                                      d
                                                    a =  ---- ∫  sin tcos t t
                                                          π
                                                     1
                From tables of integrals,                    0
                                                                    1
                                              ∫ (  sin ax cos ax x =  ------ sin(  2a  ax )  2
                                                      )
                                                             )
                                                       (
                                                              d
                and thus,                                       π
                                                 a =  ------ sin(  A  t )  2  =  0                     (6.46)
                                                  1
                                                      2π
                                                                0
                                       ,,,,
                From (6.44) with n =  2 3 4 5 …  , we get
                                                   A cos 2π +  1 ⎞   2A
                                                     ⎛
                                              a =  ---- ------------------------- ⎠  =  – -------      (6.47)
                                                   π ⎝
                                               2
                                                                      3π
                                                            2
                                                           2 )
                                                       (
                                                        1 –
                                                       (
                                                a =  A cos 3π +  1 )  0                                (6.48)
                                                     ---------------------------------- =
                                                 3
                                                       π 1 –(  3 )  2
                We see that for odd integers of  ,   n  0 . However, for n =  even , we get
                                              na =
                                                     (
                                                   A cos 4π +  1 )   2A
                                              a =  ---------------------------------- =  – ---------   (6.49)
                                               4
                                                     π 14 ) (  –  2  15π
                                                     (
                                                                     2A
                                              a =  A cos 6π +  1 )  – ---------                        (6.50)
                                                   ---------------------------------- =
                                               6
                                                     π 16 ) (  –  2  35π
                                                     (
                                                                     2A
                                              a =  A cos 8π +  1 )  – ---------                        (6.51)
                                                   ---------------------------------- =
                                               8
                                                     π 18 ) (  –  2  63π
                and so on.
                Now, we need to evaluate the b n  coefficients. For this example,
                                        1   2π              A  π             A   2π
                                                                                         d
                                                      d
                                 b =   A---  ∫  ft()sin nt t =  ---- ∫  sin tsin nt t +  ---- ∫  0sin nt t
                                                                         d
                                  n
                                        π
                                           0                π  0             π  π
               Numerical Analysis Using MATLAB® and Excel®, Third Edition                             6−21
               Copyright © Orchard Publications
   233   234   235   236   237   238   239   240   241   242   243