Page 241 - Numerical Analysis Using MATLAB and Excel
P. 241

Chapter 6  Fourier, Taylor, and Maclaurin Series


                obtain the DC  value. By substitution of n =  0 , we get


                                                          a =   4A
                                                                -------
                                                           0
                                                                π
                Therefore, the DC  value is
                                                       1     2A
                                                       -
                                                       --a =  -------                                  (6.58)
                                                       2  0   π
                From (6.57) we observe that for all n =  odd , other than n =  1 , a =  . 0
                                                                               n
                To obtain the value of  , we must evaluate the integral
                                      a
                                       1
                                                          1  π
                                                     a =  --- ∫  sin tcos t t
                                                                      d
                                                          π
                                                      1
                From tables of integrals,                    0
                                                                    1
                                               ∫ (  sin ax cos ax x =  ------ sin(  2a  ax )  2
                                                       (
                                                      )
                                                             )
                                                              d
                and thus,
                                                       1
                                                 a =   ------ sin(  2π  t )  2  π  =  0                (6.59)
                                                  1
                                                                0
                For n =  even , from (6.57) we get
                                                       (
                                                   – 2A cos 2π +  1 )  4A
                                              a =  ----------------------------------------- =  – -------  (6.60)
                                               2
                                                      π 2 –(  2  1 )   3π
                                                       (
                                                  – 2A cos 4π +  1 )   4A
                                             a =  ----------------------------------------- =  – ---------  (6.61)
                                              4
                                                      π 4 –(  2  1 )  15π
                                                       (
                                                                       4A
                                                  ----------------------------------------- =
                                             a =  – 2A cos 6π + 1 )  – ---------                       (6.62)
                                              6
                                                      π 6 –(  2  1 )  35π
                                                       (
                                                  – 2A cos 8π + 1 )    4A
                                             a =  ----------------------------------------- =  – ---------  (6.63)
                                              8
                                                      π 8 –(  2  1 )  63π
                and so on. Then, combining the terms of (6.58) and (6.60) through (6.63) we get

                                              ⎧
                                                                  cos
                                                                           cos
                                                                              8ωt
                                                         cos
                                                            4ωt
                                                                     6ωt
                                      ------- –
                               ft() =  2A  4A cos  2ωt   ------------------ +  ------------------ +  ------------------ +  … ⎬  ⎫  (6.64)
                                           ------- ------------------ +
                                              ⎨
                                       π    π  ⎩  3        15       35       63        ⎭
                Therefore, the trigonometric form of the Fourier series for the full−wave rectification waveform with
                even symmetry is
               6−24                             Numerical Analysis Using MATLAB® and Excel®, Third Edition
                                                                              Copyright © Orchard Publications
   236   237   238   239   240   241   242   243   244   245   246