Page 239 - Numerical Analysis Using MATLAB and Excel
P. 239

Chapter 6  Fourier, Taylor, and Maclaurin Series


                and from tables of integrals,

                                                                        (
                                                                         m +
                                                                             n x
                                                           (
                                                                 )
                                                                     sin
                                                            mn x
                                                              –
                                                        sin
                                  ∫ (  sin mx sin nx x =  ----------------------------- –  ------------------------------    m ≠(  n )  )  2  n )  2
                                          )
                                                 )
                                           (
                                                  d
                                                                        (
                                                                      2m +
                                                                 )
                                                           (
                                                         2m n
                                                              –
                Therefore,
                                          A 1⎧      ( sin  1n t  ( sin  1 +  n t  π ⎫
                                                         )
                                                                     )
                                                      –
                                    b =   ---- -- - ⎩  -------------------------- –  ---------------------------  0 ⎬  ⎭
                                            ⋅ ⎨
                                     n
                                          π 2
                                                                   n
                                                       n
                                                               1 +
                                                   1 –
                                          A sin (  1n π  –  )  ( sin  1 +  n π  )
                                       =  ------ ---------------------------- –  ---------------------------- –  0 +  0  0    n ≠ 1 )
                                                                                  (=
                                          2π    1 –  n       1 +  n
                that is, all the b n   coefficients, except b 1 , are zero.
                We will find b 1  by direct substitution into (6.14) for n =  1 . Thus,
                                     A  π      2     A t   sin 2t  π  A π   sin 2π    A
                                              )
                               b =   ---- ∫  (  sin t d =  ---- -- –  ------------  =  ---- --- –  -------------- =  ----  (6.52)
                                                 t
                                                        -
                                 1
                                     π
                                       0             π 2     4   0    π 2     4       2
                Combining (6.45) and (6.47) through (6.52), we find that the trigonometric Fourier series for the
                half−wave rectification waveform with no symmetry is
                                                             cos
                                                                               8t
                                                                4t
                                                                            cos
                                ft() =  A  A    t  A cos 2t  ------------- +  cos 6t  ------------- +  …  (6.53)
                                           ---- sin –
                                                                     ------------- +
                                                   ---- ------------- +
                                       ---- +
                                       π   2       π   3      15      35      63
                Example 6.7
                A full−wave rectification waveform is defined as
                                                    ft() =  Asin ωt                                    (6.54)
                Express ft()  as a trigonometric Fourier series. Assume ω =  . 1
                Solution:
                The waveform is shown in Figure 6.19 where the ordinate was arbitrarily chosen as shown.
                                           A
                                          1
                                          0. 9
                                          0. 8
                                          0. 7
                                          0. 6
                                          0. 5
                                          0. 4
                                          0. 3
                                          0. 2
                                          0. 1
                                         – 2π    2  – π  4     6  0  8    π  10   12  2π
                                          0
                                           0
                                    Figure 6.19. Full−wave rectified waveform with even symmetry
               6−22                             Numerical Analysis Using MATLAB® and Excel®, Third Edition
                                                                              Copyright © Orchard Publications
   234   235   236   237   238   239   240   241   242   243   244