Page 244 - Numerical Analysis Using MATLAB and Excel
P. 244

Alternate Forms of the Trigonometric Fourier Series


                                               ft()
                                            3

                                            2

                                            1
                                                                           ω =  1
                                                                                 t
                                                   π/2   π   3π/2  2π
                                             Figure 6.21. Waveform for Example 6.8
                Solution:
                The given waveform has no symmetry; thus, we expect both cosine and sine functions with odd

                and even terms present. Also, by inspection the DC  value is not zero.
                We will compute the a n  and b n  coefficients, the DC  value, and we will combine them to get an
                expression in the form of (6.63). Then,

                                                                               ⁄
                                   ⁄
                              1   π 2            1   2π               3      π 2   1       2π
                         a =  --- ∫ 0  3 ()cos nt t +d  --- ∫  π 2  1 ()cos nt t =  ------ sin nt  0  +  ------ sin nt  π 2
                                                                d
                          n
                                                 π
                              π
                                                                                  nπ
                                                                     nπ
                                                      ⁄
                                                                                            ⁄
                               3     π   1          1     π    2     π                                 (6.70)
                            =  ------ sin n--- +  ------ sin n2π ------ sin–  n--- =  ------ sin n ---
                              nπ     2   nπ        nπ     2   nπ     2
                We observe that for n =  even , a =  . 0
                                                n
                For n =  odd ,
                                                        a =  2                                         (6.71)
                                                             ---
                                                             π
                                                         1
                and
                                                              2
                                                       a =  – ------                                   (6.72)
                                                        3
                                                             3π
                The DC   value is
                                             ⁄
                                 1      1   π 2        1   2π         1    π 2    2π
                                                                             ⁄
                                                                        (
                                 --a =  ------ ∫  3 () t +  ------  ∫  1 () t =  ------ 3t  +  t  )
                                 -
                                                                d
                                                  d
                                                                                   ⁄
                                 2  0  2π             2π             2π    0      π 2
                                                           ⁄
                                           0              π 2
                                                                                                       (6.73)
                                        1  ⎛  3π     π⎞    1           3
                                                                    )
                                     =  ------ ------ + 2π –  --- =  ------ π +(  2π =  -- -
                                       2π ⎝  2       2 ⎠  2π           2
                The b n  coefficients  are
               Numerical Analysis Using MATLAB® and Excel®, Third Edition                             6−27
               Copyright © Orchard Publications
   239   240   241   242   243   244   245   246   247   248   249