Page 243 - Numerical Analysis Using MATLAB and Excel
P. 243

Chapter 6  Fourier, Taylor, and Maclaurin Series


                               1       ⎛  a     b     ⎞    ⎛  a       b      ⎞
                                                             2
                                                 1
                                         1
                                                                       2
                        ft() =  --a +  c  ---- cos t +  ----- sin t +  c  ----cos 2t +  ----- sin 2t +  …
                               -
                               2  0  1  c ⎝  1  c 1   ⎠   2  c ⎝  2   c 2    ⎠
                                               ----- sin
                                     ----- cos
                                + c n  ⎛  a n n  nt +  b n n  nt ⎞  ⎠
                                     c ⎝
                                               c
                               1          cos θ cos t +  sin  θ sin  t  cos θ cos 2t +  sin θ sin 2t
                                                                            2
                                                                                        2
                                              1
                                                          1
                               -
                             =  --a +  c ⎛  ⎧  ⎪  ⎪  ⎪  ⎨  ⎪  ⎪  ⎪  ⎪  ⎩  ⎞  +  c ⎛ ⎪  ⎧  ⎪  ⎪  ⎪  ⎪  ⎨  ⎪  ⎪  ⎪  ⎪  ⎩  ⎞  +  …
                               2  0  1  ⎝         ( cos  t –  θ )  1  ⎠  2  ⎝  cos (  2t θ )  –  2  ⎠
                                      cos θ cos nt +  sin θ sin nt
                                + c ⎛  n  ⎝  ⎧  ⎪  n ⎪  cos (  ⎪  nt – θ )  ⎪  n  ⎪  n  ⎪  ⎪  ⎩  ⎞  ⎠
                                                  ⎨
                                             ⎪
                and, in general, for ω ≠  1 , we get
                                   1      ∞                    1     ∞       ⎛          b n⎞
                                    -
                             ft() =  --a +  ∑  c cos (  nωt – θ )  =  ---a +  c cos ⎝ ∑  nωt –  atan -----  (6.67)
                                   2  0       n           n    2  0      n              a  ⎠
                                         n =  1                     n =  1               n
                Similarly,
                                  1         sin ϕ cos t +  cos ϕ sin t
                                                1
                                                            1
                                  -
                           ft() =  --a + c ⎛  ⎧  ⎪  ⎪  ⎪  ⎪  ⎨  ⎪  ⎪  ⎪  ⎪  ⎩  ⎞
                                  2  0  1  ⎝      sin (  t + ϕ )  1  ⎠
                                      sin ϕ cos 2t +  cos ϕ sin 2t       sin ϕ cos nt +  cos ϕ sin nt
                                 c ⎛  2  ⎝  ⎧  ⎪  2  ⎪  sin (  2t + ϕ )  ⎪  2  ⎪  2  ⎪  ⎪  ⎩  ⎞  ⎠  +  … +  c ⎛ ⎪  n  ⎝  ⎧  ⎪  n  ⎪  sin ⎪  (  nt +  ϕ )  ⎪  n  ⎪  n  ⎪  ⎪  ⎩  ⎞  ⎠
                                                  ⎨
                                               ⎪
                                                                                     ⎨
                                                                                   ⎪
                and, in general, where ω ≠  1 , we get
                                    1     ∞                    1      ∞      ⎛          a n⎞
                                                               -
                                    -
                             ft() =  --a +  ∑  c sin (  nωt +  ϕ )  =  --a +  ∑  c sin  nωt +  atan -----  (6.68)
                                    2  0      n           n    2  0      n   ⎝          b  ⎠
                                         n =  1                     n =  1               n
                The series of (6.67) and (6.68) can be expressed as phasors. Since it is customary to use the cosine
                function in the time domain to phasor transformation, we choose to use the transformation of
                (6.63) below.

                                  1     ∞       ⎛          b n⎞  1      ∞          b n
                                                                  -
                                  -
                                  --a +    c cos ⎝ ∑  nωt –  atan ----- ⇔  --a +  ∑  c ∠ – atan -----  (6.69)
                                  2  0      n              a  ⎠  2  0       n       a
                                       n =  1               n          n =  1        n

                Example 6.8
                Find the first 5 terms of the alternate form of the trigonometric Fourier series for the waveform of
                Figure 6.21.






               6−26                             Numerical Analysis Using MATLAB® and Excel®, Third Edition
                                                                              Copyright © Orchard Publications
   238   239   240   241   242   243   244   245   246   247   248