Page 252 - Numerical Methods for Chemical Engineering
P. 252

Lagrangian methods for constrained optimization                     241



                                                   (x) = 0 and S i is the set of inequality constraints,
                  S e is the set of equality constraints, c m∈S e
                      (x) ≥ 0. If µ is the vector of Lagrange multipliers that enforce the constraints, the
                  c m∈S i
                  constrained minimum satisfies

                                           ∇F −     µ m ∇c m    0
                                                   m
                                                             =                      (5.114)
                                               c(x) − s         0
                  Let us examine the Newton update to (5.114) from the current estimates of the constrained
                                              [k]
                  minimum x [k]  and the multipliers µ ,
                        
  2           [k]            
                 T
                         (∇ L| x )  − C        x [k]    −∇F| x + C  [k]  µ [k]
                                         T
                               [k]
                                                              [k]
                                                    =              [k]              (5.115)
                                                [k]
                           C  [k]     0       µ               s − c
                  where
                                         T     
                                −−   (∇c 1 )  −−
                                        .            2      2          2
                                        .                                           (5.116)
                                               
                                        .          ∇ L =∇ F −   m µ m ∇ c m
                          C = 
                                −−   (∇c n c ) T  −−
                  Equation (5.115) is equivalent to the two coupled linear systems


                                         [k]     [k] T  [k]            [k] T  [k]
                               ∇ L  [k]  x  − C     µ   =−∇F| x + (C ) µ
                                                                 [k]
                                 2
                                    x
                                                                                    (5.117)
                                                  [k]
                                                C  x  [k]  = s − c [k]
                                 [k] T
                  We can subtract (C ) µ [k]  from the first of these linear systems to obtain
                                      2       [k]     [k] T  [k+1]

                                    (∇ L| x ) x  − C    µ     =−∇F| x [k]           (5.118)
                                          [k]
                                       [k]
                  where µ [k+1]  = µ [k]  + µ . Thus, (5.115) is equivalent to
                                               T
                             
   2           [k]    
  [k]
                               (∇ L| x )  − C       x         −∇F| x [k]
                                    [k]
                                                          =                         (5.119)
                                 C [k]     0       µ [k+1]     s − c [k]
                  Let us now consider the quadratic optimization problem
                                             1
                                                  2
                                               T
                                        min p p (∇ L| x )p + ∇F| x · p
                                                      [k]
                                                                [k]
                                             2
                                                                                    (5.120)
                                         subject to C  [k]  p + c [k]  − s = 0
                  The Lagrangian of this problem is
                         ˜
                                1

                                     2
                                  T
                         L(p) = p (∇ L| x )p + ∇F| x · p − µ · C  [k]  p + c [k]  − s    (5.121)
                                         [k]
                                                   [k]
                                2
                                                             ˜
                  and the constrained minimum of (5.120) occurs at ∇L = 0,
                                         2


                                      (∇ L| x )p + ∇F| x − C [k] T µ = 0            (5.122)
                                            [k]
                                                       [k]
                  which is equivalent to (5.118). Thus, we have the quadratic problem to compute x [k+1]  =
                  x [k]  + p,
                                         1
                                              2
                                           T
                                    min p p (∇ L| x )p + ∇F| x · p
                                                             [k]
                                                  [k]
                                         2
                                  subject to ∇c m | x · p + c [k]  = 0              (5.123)
                                                [k]
                                                       m             m ∈ S e
                                    ∇c m | x · p + c [k]  ≥ 0
                                          [k]
                                                 m        m ∈ S i
   247   248   249   250   251   252   253   254   255   256   257