Page 63 - Numerical methods for chemical engineering
P. 63

Sparse and banded matrices                                            49



                  In general, this approximation is not exact, and we must reduce the value of  y by increasing
                  N until the magnitude of the approximation error is below some acceptable value. For this
                  particularproblem,asthetruesolutionisaquadraticfunction,weareluckyandthisalgebraic
                  approximation is exact.
                    To “solve” a boundary value problem using the method of finite differences, we formulate
                  a set of N algebraic equations for the set of N unknowns {v x (y 1 ),v x (y 2 ),...,v x (y N )}.For
                  each grid point, we obtain an algebraic equation by requiring the differential equation to be
                  satisfied locally

                                                            2
                                                   P       d v x
                                           0 =−        + µ                          (1.245)
                                                   x       dy 2
                                                                y j
                  If we insert the central-difference approximation for the second derivative, the algebraic
                  equation for grid point j is

                                      P       v x (y j+1 ) − 2v x (y j ) + v x (y j−1 )
                              0 =−        + µ                                       (1.246)
                                      x                ( y) 2
                  We write this in a more compact form by defining the column vector
                                                            
                                                 v 1     v x (y 1 )
                                                         v x (y 2 )
                                                 v 2
                                                            
                                                                                (1.247)
                                                            .  
                                           v =  .  = 
                                                  .
                                                .        . .  
                                                 v N     v x (y N )
                  so that the algebraic equation for grid point j becomes
                                                         ( y) 2     P
                                       v j+1 − 2v j + v j−1 =                       (1.248)
                                                           µ     x
                  It is standard practice to make the diagonal elements positive,
                                                          ( y) 2     P
                                      −v j+1 + 2v j − v j−1 =−                      (1.249)
                                                            µ      x
                  If we assemble these equations in matrix form, we obtain the system

                                                                     
                           2   −1                       v 1        G + v 0
                          −1   2  −1                            G    
                         
                                                                
                                                                          
                                                      v 2 
                               −1   2   −1                           G
                                                                     
                                                     v 3             
                                    .   .    .
                                                      .    =    .             (1.250)
                                   . .  . .  . .      . .       . .  
                                                                     
                                                                     
                                        −1   2                       G
                                                −1   v N−1           
                                            −1    2     v N       G + v N+1
                  where
                                                   ( y) 2     P
                                             G =−                                   (1.251)
                                                     µ     x
   58   59   60   61   62   63   64   65   66   67   68