Page 125 - Optofluidics Fundamentals, Devices, and Applications
P. 125
Optofluidic Trapping and Transport Using Planar Photonic Devices 105
39. M. Righini, A.S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective
trapping in a patterned plasmonic landscape,” Nature Physics, 3(7), (2007),
477–480.
40. R.F. Marchington, M. Mazilu, S. Kuriakose, V. Garces-Chavez, P.J. Reece,
T.F. Krauss, M. Gu, and K. Dholakia, “Optical deflection and sorting of mic-
roparticles in a near-field optical geometry,” Optics Express, 16(6), (2008),
3712–3726.
41. M. Gu, J.B. Haumonte, Y. Micheau, J.W.M. Chon, and X.S. Gan, “Laser trap-
ping and manipulation under focused evanescent wave illumination,” Applied
Physics Letters, 84(21), (2004), 4236–4238.
42. T. Cizmar, M. Siler, M. Sery, P. Zemanek, V. Garces-Chavez, and K. Dholakia,
“Optical sorting and detection of submicrometer objects in a motional stand-
ing wave,” Physical Review B, 74(3), (2006).
43. A.N. Grigorenko, N.W. Roberts, M.R. Dickinson, and ZhangY, “Nanometric
optical tweezers based on nanostructured substrates,” Nature Photonics, 2(6),
(2008), 365–370.
44. V. Garces-Chavez, R. Quidant, P.J. Reece, G. Badenes, L. Torner, and K. Dholakia,
“Extended organization of colloidal microparticles by surface plasmon polari-
ton excitation,” Physical Review B, 73(8), (2006).
45. P. Prasad, Nanophotonics, John Wiley and Sons, Inc., (2004), Hoboken.
46. B. Saleh and M. Teich, Fundamentals of Photonics, John Wiley and Sons, Inc.,
(1991), New York.
47. C. Pollock and M. Lipson, Integrated Photonics, Kluwer, (2003), Norwell.
48. L.N. Ng, B.J. Luf, M.N. Zervas, and J.S. Wilkinson, “Forces on a Rayleigh
particle in the cover region of a planar waveguide,” Journal of Lightwave
Technology, 18(3), (2000), 388–400.
49. B.S. Schmidt, A.H.J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping
and transport on solid core waveguides within a microfluidic device,” Optics
Express, 15(22), (2007), 14322–14334.
50. S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the
evanescent field of a laser-beam,” Optics Letters, 17(11), (1992), 772–774.
51. T. Tanaka and S. Yamamoto, “Optically induced propulsion of small particles
in an evenescent field of higher propagation mode in a multimode, channeled
waveguide,” Applied Physics Letters, 77(20), (2000), 3131–3133.
52. S. Gaugiran, S. Getin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and
J. Derouard, “Optical manipulation of microparticles and cells on silicon
nitride waveguides,” Optics Express, 13(18), (2005), 6956–6963.
53. L.N. Ng, B.J. Luff, M.N. Zervas, and J.S. Wilkinson, “Propulsion of gold
nanoparticles on optical waveguides,” Optics Communications, 208(1–3),
(2002), 117–124.
54. K. Grujic, O.G. Helleso, J.P. Hole, and J.S. Wilkinson, “Sorting of polystyrene
microspheres using a Y-branched optical waveguide,” Optics Express, 13(1),
(2005), 1–7.
55. S. Mandal and D. Erickson, “Optofluidic transport in liquid core waveguiding
structures,” Applied Physics Letters, 90, (2007), 184103.
56. P. Measor, S. Kuehn, E.J. Lunt, B.S. Phillips, A.R. Hawkins, and H. Schmidt,
“Hollow-core waveguide characterization by optically induced particle trans-
port,” Optics Letters, 33(7), (2008), 672–674.
57. D.C. Duffy, J.C. McDonald, O.J.A. Schueller, and G.M. Whitesides, “Rapid
prototyping of microfluidic systems in poly(dimethylsiloxane),” Analytical
Chemistry, 70(23), (1998), 4974–4984.
58. J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H.K. Wu, O.J.A.
Schueller, and G.M. Whitesides, “Fabrication of microfluidic systems in poly
(dimethylsiloxane),” Electrophoresis, 21(1), (2000), 27–40.
59. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh
scattering regime,” Optics Communications, 124(5–6), (1996), 529–541.
60. H.Y. Jaising and O.G. Helleso, “Radiation forces on a Mie particle in the
evanescent field of an optical waveguide,” Optics Communications, 246(4–6),
(2005), 373–383.