Page 126 - Optofluidics Fundamentals, Devices, and Applications
P. 126
106 Cha pte r F i v e
61. E. Almaas and I. Brevik, “Radiation forces on a micrometer-sized sphere in
an evanescent field,” Journal of the Optical Society of America B-Optical Physics,
12(12), (1995), 2429–2438.
62. K. Svoboda and S.M. Block, “Biological applications of optical forces,” Annual
Review of Biophysics and Biomolecular Structure, 23, (1994), 247–285.
63. S. Gaugiran, S. Getin, J.M. Fedeli, and J. Derouard, “Polarization and particle
size dependence of radiative forces on small metallic particles in evanescent
optical fields. Evidences for either repulsive or attractive gradient forces,”
Optics Express, 15(13), (2007), 8146–8156.
64. J.D. Jackson, Classical Electrodynamics, 2d ed, John Wiley and Sons, Inc., (1975),
New York.
65. R.L. Panton, Incompressible Flow, 3d ed, John Wiley and Sons, Inc.,. (2005),
Hoboken.
66. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, with
Special Applications to Particulate Media, 2d rev. ed, Noordhoff International
Publishing, (1973), Leyden.
67. M. Mishchenko, L. Travis, and A. Lacis, Scattering, Absorption, and Emission of
Light by Small Particles, Cambridge University Press (2002).
68. I. Brevik, T.A. Sivertsen, and E. Almaas, “Radiation forces on an absorbing
micrometer-sized sphere in an evanescent field,” Journal of the Optical Society
of America B-Optical Physics, 20(8), (2003), 1739–1749.
69. A.J.H. Yang and D. Erickson, “Stability analysis of optofluidic transport on
solid-core waveguiding structures,” Nanotechnology, 19, (2008), 045704.
70. L.N. Ng, M.N. Zervas, J.S. Wilkinson, and B.J. Luff, “Manipulation of colloidal
gold nanoparticles in the evanescent field of a channel waveguide,” Applied
Physics Letters, 76(15), (2000), 1993–1995.
71. D. Erickson, “Towards numerical prototyping of labs-on-chip: modeling for
integrated microfluidic devices,” Microfluidics and Nanofluidics, 1(4), (2005),
301–318.