Page 303 - Optofluidics Fundamentals, Devices, and Applications
P. 303

Optofluidic Resonators   277


                        I =      T  2     =        T  2
                        T    + R − 2 cosϕ                 ⎛ ⎞
                                                           ϕ
                                2
                            1      R             2       2
                                            1 (  −  R)  + 4 Rsin  ⎜ ⎟
                                                          ⎝ ⎠ 2
                          =  T 2  2 ⎜ ⎛    1         ⎞ ⎟
                            ( (1 − R )  ⎡  4R  ⎤  ⎛ ⎞ϕ
                                  ⎜ 1 +  ⎢  2 ⎥ sin ⎜ ⎟ ⎟ ⎟
                                                2
                                  ⎝   ⎣ (1 − R )  ⎦  ⎝ 2 ⎠ ⎠
                                 2
                                            ϕ
                           ⎡ T  ⎤ ⎡        ⎛ ⎞⎤  −1  ⎡ T ⎤  2
                                                           ϕ
                          =  ⎢  ⎥ ⎢ 1  + K sin 2  ⎜ ⎟⎥  =  ⎢  ⎥  Α()  (12-22)
                           ⎣1 − ⎦ ⎣        ⎝ ⎠ 2  ⎦  1 ⎣ ⎣  − R⎦
                               R
                                2
                        R 1
               With  K = 4 /(  −  R) , Α()ϕ  is defined as the Airy function. The ampli-
               tude of the resulting electric field vector of the back-reflected light
                       ()
               waves Em  is obtained using again the principle of superposition
                      r
               for m reflected waves:
                               1 1 2 {
                                             iϕ
                                         −+
                               + −+
                                                    −+
                            +
                    E m =  r + t t re iϕ  1 +  rre +  +  rr ( 12 ) )  m −2  e im −2)ϕ }
                                                           (
                      ()
                     r     1             12
                              t t re ( 1 − rre  m  )
                                         − + i(m−1)ϕ
                               +− + iϕ
                         = r + +  11 2   1 2                       (12-23)
                           1         −  −+  iϕ
                                    1  rre
                                       12
               For an infinite number of reflections  m → ∞
                                               +− +
                                              tt r e iϕ
                                           +
                                               11 2
                               E → E ∞ =  r +                      (12-24)
                                     ()
                                                 −+
                                r    r    1  1 −  rre iϕ
                                                 12
               Considering two identical dielectric surfaces, using Eqs. (12-21) and
               (12-24):
                             +− +
                                                  iϕ
                            tt r e iϕ    1 (  − Re iϕ − Te )  1− e iϕ
                         +
                    E =  r −  11 1  =  R             = R           (12-25)
                     r   1   −  +  2  iϕ        iϕ             iϕ
                            1  re          1 1− Re        1− Re
                               1
               which leads to
                                                        ⎛ ⎞
                                                         ϕ
                                                  4 Rsin  2 ⎜ ⎟
                                 (22    ϕ)              ⎝ 2 ⎠ ⎠
                                   − cos
                           ∗
                    I =  E E =  R            =
                     R   r r    +  2       ϕ                ⎛ ⎞
                               1  R − 2 Rcos                 ϕ
                                                − )
                                              (1 R  2  + 4R sin  2  ⎜ ⎟
                                                            ⎝ ⎠ 2
                             ⎛ ⎞ ⎡       ⎛ ϕ⎞⎤ − 1
                              ϕ
                                  +
                                ⎢
                      = K  sin  2  ⎜ ⎟ 1 K  sin 2 ⎜ ⎟⎥            (12-26)
                                       n
                             ⎝ ⎠ 2       ⎝ 2⎠
                                ⎣           ⎦
   298   299   300   301   302   303   304   305   306   307   308