Page 47 - Optofluidics Fundamentals, Devices, and Applications
P. 47
28 Cha pte r T w o
problems, however, and to expand the range of properties of PDMS-
based systems.
References
1. G. M. Whitesides, “The origins and the future of microfluidics,” Nature, 442,
(2006), 368–373.
2. S. C. Terry, J. H. Jerman, and J. B. Angell, “A gas chromatographic air ana-
lyzer fabricated on a silicon wafer,” IEEE Trans. Electron Devices, ed. 26, (1979),
1880–1886.
3. D. J. Harrison, K. Fluri, K. Seiler, Z. Fan, C. S. Effenhauser, and A. Manz,
“Micromachining a miniaturized capillary electrophoresis-based chemical
analysis system on a chip,” Science, 261, (1993), 895–897.
4. M. U. Kopp, A. J. De Mello, and A. Manz, “Chemical amplification: continu-
ous-flow PCR on a chip,” Science, 280, (1998), 1046–1048.
5. A. Manz and H. Becker, “Parallel capillaries for high throughput in electropho-
retic separations and electroosmotic drug discovery systems,” Transducers 97,
Int. Conf. Solid-State Sens. Actuators, 2, (1997), 915–918.
6. N. Chiem and D. J. Harrison, “Microchip-based capillary electrophoresis for
immunoassays: analysis of monoclonal antibodies and theophylline,” Anal.
Chem., 69, (1997), 373–378.
7. K. Fluri, G. Fitzpatrick, N. Chiem, and D. J. Harrison, “Integrated capillary
electrophoresis devices with an efficient postcolumn reactor in planar quartz
and glass chips,” Anal. Chem., 68, (1996), 4285–4290.
8. P. C. H. Li and D. J. Harrison, “Transport, manipulation, and reaction of
biological cells on-chip using electrokinetic effects,” Anal. Chem., 69, (1997),
1564–1568.
9. Z. Liang, N. Chiem, G. Ocvirk, T. Tang, K. Fluri, and D. J. Harrison,
“Microfabrication of a planar absorbance and fluorescence cell for integrated
capillary electrophoresis devices,” Anal. Chem., 68, (1996), 1040–1046.
10. H. Salimi-Moosavi, T. Tang, and D. J. Harrison, “Electroosmotic pumping of
organic solvents and reagents in microfabricated reactor chips,” J. Am. Chem.
Soc., 119, (1997), 8716–8717.
11. A. G. Hadd, D. E. Raymond, J. W. Halliwell, S. C. Jacobson, and J. M. Ramsey,
“Microchip device for performing enzyme assays,” Anal. Chem., 69, (1997),
3407–3412.
12. S. C. Jacobson, C. T. Culbertson, J. E. Daler, and J. M. Ramsey, “Microchip struc-
tures for submillisecond electrophoresis,” Anal. Chem., 70, (1998), 3476–3480.
13. J. Khandurina, S. C. Jacobson, L. C. Waters, R. S. Foote, and J. M. Ramsey,
“Microfabricated porous membrane structure for sample concentration and
electrophoretic analysis,” Anal. Chem., 71, (1999), 1815–1819.
14. J. P. Kutter, S. C. Jacobson, N. Matsubara, and J. M. Ramsey, “Solvent-pro-
grammed microchip open-channel electrochromatography,” Anal. Chem., 70,
(1998), 3291–3297.
15. L. C. Waters, S. C. Jacobson, N. Kroutchinina, J. Khandurina, R. S. Foote, and
J. M. Ramsey, “Multiple sample pcr amplification and electrophoretic analysis
on a microchip,” Anal. Chem., 70, (1998), 5172–5176.
16. S. Liu, Y. Shi, W. W. Ja, and R. A. Mathies, “Optimization of high-speed DNA
sequencing on microfabricated capillary electrophoresis channels,” Anal. Chem.,
71, (1999), 566–573.
17. P. C. Simpson, D. Roach, A. T. Woolley, T. Thorsen, R. Johnston, G. F. Sensabaugh,
and R. A. Mathies, “High-throughput genetic analysis using microfabricated
96-sample capillary array electrophoresis microplates,” Proc. Natl. Acad. Sci.,
95, (1998), 2256–2261.
18. A. T. Woolley and R. A. Mathies, “Ultra-high-speed DNA sequencing using
capillary electrophoresis chips,” Anal. Chem., 67, (1995), 3676–3680.
19. J. C. McDonald and G. M. Whitesides, “Poly(dimethylsiloxane) as a material
for fabricating microfluidic devices,” Acc. Chem. Res., 35, (2002), 491–499.