Page 48 - Optofluidics Fundamentals, Devices, and Applications
P. 48
Basic Micr ofluidic and Soft Lithographic Techniques 29
20. B. D. Gates and G. M. Whitesides, “Replication of vertical features smaller than
2 nm by soft lithography,” J. Am. Chem. Soc., 125, (2003), 14986–14987.
21. Q. Xu, B. T. Mayers, M. Lahav, D. V. Vezenov, and G. M. Whitesides,
“Approaching zero: using fractured crystals in metrology for replica mold-
ing,” J. Am. Chem. Soc., 127, (2005), 854–855.
22. B. Grzybowski, D. Qin, R. Haag, and G. M. Whitesides, “Elastomeric optical
elements with deformable surface topographies: applications to force measure-
ments, tunable light transmission and light focusing,” Sens. Actuators, A, A86,
(2000), 81–85.
23. J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. Chang, L. Lee, and M. Prentiss,
“Elastomeric optics,” Chem. Mater., 8, (1996), 1380–1385.
24. J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, “Components for
integrated poly(dimethylsiloxane) microfluidic systems,” Electrophoresis, 23,
(2002), 3461–3473.
25. A. R. Abate, D. Lee, T. Do, C. Holtze, and D. A. Weitz, “Glass coating for PDMS
microfluidic channels by sol-gel methods,” Lab Chip, 8, (2008), 516–518.
26. J. C. McDonald, M. L. Chabinyc, S. J. Metallo, J. R. Anderson, A. D. Stroock, and G.
M. Whitesides, “Prototyping of microfluidic devices in poly(dimethylsiloxane)
using solid-object printing,” Anal. Chem., 74, (2002), 1537–1545.
27. A. Bernard, B. Michel, and E. Delamarche, “Micromosaic immunoassays,” Anal.
Chem., 73, (2001), 8–12.
28. J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of
poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem., 75, (2003),
6544–6554.
29. G. T. Roman, T. Hlaus, K. J. Bass, T. G. Seelhammer, and C. T. Culbertson, “Sol-
gel modified poly(dimethylsiloxane) microfluidic devices with high electroos-
motic mobilities and hydrophilic channel wall characteristics,” Anal. Chem., 77,
(2005), 1414–1422.
30. J. N. Lee, X. Jiang, D. Ryan, and G. M. Whitesides, “Compatibility of mam-
malian cells on surfaces of poly(dimethylsiloxane),” Langmuir, 20, (2004),
11684–11691.
31. R. Mukhopadhyay, “When PDMS isn’t the best,” Anal. Chem., 79, (2007),
3248–3253.
32. T. M. Squires and S. R. Quake, “Microfluidics: fluid physics at the nanoliter
scale,” Rev. Mod. Phys., 77, (2005), 977–1026.
33. H. A. Stone and S. Kim, “Microfluidics: basic issues, applications, and chal-
lenges,” AIChE J., 47, (2001), 1250–1254.
34. H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering flows in small devices: micro-
fluidics toward a lab-on-a-chip,” Annu. Rev. Fluid Mech., 36, (2004), 381–411.
35. L. Shui, J. C. T. Eijkel and A. van den Berg, “Multiphase flow in micro- and
nanochannels,” Sens. Actuators, B, B121, (2007), 263–276.
36. T. E. Faber, Fluid Dynamics for Physicists, Cambridge University Press, New
York, 1995.
37. R. F. Ismagilov, A. D. Stroock, P. J. A. Kenis, G. Whitesides, and H. A. Stone,
“Experimental and theoretical scaling laws for transverse diffusive broaden-
ing in two-phase laminar flows in microchannels,” Appl. Phys. Lett., 76, (2000),
2376–2378.
38. V. Studer, G. Hang, A. Pandolfi, M. Ortiz, W. F. Anderson, and S. R. Quake,
“Scaling properties of a low-actuation pressure microfluidic valve,” J. Appl.
Phys., 95, (2004), 393–398.
39. M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic
microfabricated valves and pumps by multilayer soft lithography,” Science, 288,
(2000), 113–116.
40. D. B. Weibel, M. Kruithof, S. Potenta, S. K. Sia, A. Lee, and G. M. Whitesides,
“Torque-actuated valves for microfluidics,” Anal. Chem., 77, (2005), 4726–4733.
41. S. E. Hulme, S. S. S., and W. G. M., “Incorporation of prefabricated screw, pneu-
matic, and solenoid valves into microfluidic devices,” Lab Chip, submitted.
42. D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B.-H.
Jo, “Functional hydrogel structures for autonomous flow control inside micro-
fluidic channels,” Nature, 404, (2000), 588–590.