Page 49 - Optofluidics Fundamentals, Devices, and Applications
P. 49
30 Cha pte r T w o
43. W. C. Jackson, H. D. Tran, M. J. O’Brien, E. Rabinovich, and G. P. Lopez, “Rapid
prototyping of active microfluidic components based on magnetically modified
elastomeric materials,” J. Vac. Sci. Technol., B, 19, (2001), 596–599.
44. M. Kohl, D. Dittmann, E. Quandt, and B. Winzek, “Thin film shape memory
microvalves with adjustable operation temperature,” Sens. Actuators, A, A83,
(2000), 214–219.
45. N. Futai, W. Gu, J. W. Song, and S. Takayama, “Handheld recirculation
system and customized media for microfluidic cell culture,” Lab Chip, 6,
(2006), 149–154.
46. A. P. Sudarsan and V. M. Ugaz, “Multivortex micromixing,” Proc. Natl. Acad.
Sci. U.S.A., 103, (2006), 7228–7233.
47. A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezit, H. A. Stone, and G. M.
Whitesides, “Chaotic mixer for microchannels,” Science, 295, (2002), 647–651.
48. H.-P. Chou, M. A. Unger, and R. Quake Stephen, “A microfabricated rotary
pump,” Biomed. Microdevices, 3, (2001), 323–330.
49. P. Paik, V. K. Pamula, M. G. Pollack, and R. B. Fair, “Electrowetting-based
droplet mixers for microfluidic systems,” Lab Chip, 3, (2003), 28–33.
50. M. Z. Bazant and T. M. Squires, “Induced-charge electrokinetic phenom-
ena: theory and microfluidic applications,” Phys. Rev. Lett., 92, (2004),
066101/066101–066101/066104.
51. P. Takhistov, K. Duginova, and H.-C. Chang, “Electrokinetic mixing vortices
due to electrolyte depletion at microchannel junctions,” J. Colloid Interface Sci.,
263, (2003), 133–143.
52. Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto, and R. Maeda, “Ultrasonic
micromixer for microfluid systems,” Sens. Actuators, A, A93, (2001), 266–272.
53. P. Garstecki, M. J. Fuerstman, M. A. Fischbach, S. K. Sia, and G. M. Whitesides,
“Mixing with bubbles: a practical technology for use with portable microfluidic
devices,” Lab Chip, 6, (2006), 207–212.
54. N. L. Jeon, S. K. W. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, and G. M.
Whitesides, “Generation of solution and surface gradients using microfluidic
systems,” Langmuir, 16, (2000), 8311–8316.
55. H. Bang, S. H. Lim, Y. K. Lee, S. Chung, C. Chung, D.-C. Han, and J. K. Chang,
“Serial dilution microchip for cytotoxicity test,” J. Micromech. Microeng., 14,
(2004), 1165–1170.
56. K. Campbell and A. Groisman, “Generation of complex concentration pro-
files in microchannels in a logarithmically small number of steps,” Lab Chip, 7,
(2007), 264–272.
57. J. K. Chang, H. Bang, S. J. Park, S. Chung, C. Chung, and D. C. Han, “Fabrication
of the PDMS microchip for serially diluting sample with buffer,” Microsyst.
Technol., 9, (2003), 555–558.
58. S. K. W. Dertinger, D. T. Chiu, N. L. Jeon, and G. M. Whitesides, “Generation of
gradients having complex shapes using microfluidic networks,” Anal. Chem.,
73, (2001), 1240–1246.
59. C. Kim, K. Lee, J. H. Kim, K. S. Shin, K.-J. Lee, T. S. Kim, and J. Y. Kang, “A serial
dilution microfluidic device using a ladder network generating logarithmic or
linear concentrations,” Lab Chip, 8, (2008), 473–479.
60. C. Neils, Z. Tyree, B. Finlayson, and A. Folch, “Combinatorial mixing of micro-
fluidic streams,” Lab Chip, 4, (2004), 342–350.
61. G. M. Walker, N. Monteiro-Riviere, J. Rouse, and A. T. O’Neill, “A linear dilu-
tion microfluidic device for cytotoxicity assays,” Lab Chip, 7, (2007), 226–232.
62. M. Yamada, T. Hirano, M. Yasuda, and M. Seki, “A microfluidic flow distributor
generating stepwise concentrations for high-throughput biochemical process-
ing,” Lab Chip, 6, (2006), 179–184.
63. A. C. Siegel, D. A. Bruzewicz, D. B. Weibel, and G. M. Whitesides, “Microsolidics:
fabrication of three-dimensional metallic microstructures in poly(dimethylsilo
xane),”Adv. Mater., 19, (2007), 727–733.
64. A. C. Siegel, S. S. Shevkoplyas, D. B. Weibel, D. A. Bruzewicz, A. W.
Martinez, and G. M. Whitesides, “Cofabrication of electromagnets and
microfluidic systems in poly(dimethylsiloxane),” Angew. Chem., Int. Ed.,
45, (2006), 6877–6882.