Page 92 - Optofluidics Fundamentals, Devices, and Applications
P. 92
Optofluidic Optical Components 73
16. P. Measor, E. J. Lunt, L. Seballos, D. Yin, J. Z. Zhang, A. R. Hawkin, and H. Schmidt,
“On-chip surface-enhanced Raman scattering (SERS) detection using integrated
liquid-core waveguides,” Appl. Phys. Lett., 90, (2007), 211107–211109.
17. H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and
implementations,” Microfluid. Nanofluid., 4, (2008), 3–16.
18. A. R. Hawkins and H. Schmidt, “Optofluidic waveguides: II. Fabrication and
structures,” Microfluid. Nanofluid., 4, (2008), 17–32.
19. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and
E. L. Thomas, “A dielectric omnidirectional reflector,” Science, 282, (1998)
1679–1682.
20. P. Russell, “Photonic crystal fiber,” Science, 299, (2003), 358–362.
21. S. Mandal and D. Erickson, “Optofluidic transport in liquid core waveguiding
structures,” Appl. Phys. Lett., 90, (2007), 184103.
22. Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic
crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys.
Lett., 90, (2007), 193504.
23. D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul,
M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-
cladding optical waveguides,” PNAS, 101, (2004), 12434.
24. M. Brown, T. Vestad, J. Oakey, and D. W. M. Marr, “Optical waveguides via
viscosity-mismatched microfluidic flows,” Appl. Phys. Lett., 88, (2006), 134109.
25. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demon-
stration of guiding and confining light in nanometer-size low-refractive-index
material,” Opt. Lett., 29, (2004), 1626–1628.
26. C. A. Barrios, B. Sánchez, K. B. Gylfason, A. Griol, H. Sohlström, M. Holgado,
and R. Casquel, “Demonstration of slot-waveguide structures on silicon
nitride/silicon oxide platform,” Opt. Exp., 15, (2007), 6846–6856.
27. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado,
and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett., 32, (2007),
3080–3082.
28. K. A. Ingersoll, “Liquid filters for the ultraviolet, visible, and near infrared,”
Appl. Opt., 11, (1972), 2473–2476.
29. K. A. Ingersoll, “Tunable sharp cutoff liquid optical filter,” Appl. Opt., 12, (1973),
1393–1394.
30. P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler,
and B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett., 80,
(2002), 4294.
31. P. Domachuk, H. Perry, M. Cronin-Golomb, and F. G. Omenetto, “Towards
an integrated optofluidic diffractive spectrometer,” IEEE Phot. Tech. Lett., 19,
(2007), 1976–1978.
32. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and Vahala, K. J., “Ultra-high-Q
toroid microcavity on a chip,” Nature, 421, (2003), 925–928.
33. U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip
microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett., 88,
(2006), 111107.
34. N. L. Jeon, S. K. W. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, and
G. M. Whitesides, “Generation of solution and surface gradients using
microfluidic systems,” Langmuir, 16, (2000), 8311.
35. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic
tuning of photonic crystal circuits,” Opt. Lett., 31, (2006), 59–61.
36. M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic
microfabricated valves and pumps by multilayer soft lithography,” Science, 288,
(2000), 113.
37. D. J. Laser and J. G. Santiago, “A review of micropumps,” J. Micromech.
Microeng., 14, (2004), 35.
38. R. Shamai and U. Levy, “On chip tunable micro ring resonator actuated by
electrowetting,” Opt. Exp., 17, (2009), 1116–1125.