Page 211 - Organic Electronics in Sensors and Biotechnology
P. 211

188    Chapter  Five


                       1.00                    1.00
                                              Normalized intensity  0.50
                                               0.75
                     Normalized intensity  0.50  0.00  0.0  Time (ms)  0.2
                       0.75
                                               0.25
                                                         0.1


                       0.25


                       0.00
                             0.0    0.5     1.0    1.5     2.0    2.5
                                           Time (ms)

               FIGURE 5.18 Normalized intensities of the OLED EL tail + sensor fi lm PL
               measured during 0.1 and 1 ms pulses of a microcavity OLED; the OLED
               structure was [26.7 nm Ag] / [5 nm CuPc] / [85 nm NPD] / [85 nm Alq ] /
                                                                   3
               [1 nm LiF] / [136 nm Al]. The inset shows the normalized intensity measured
               during a 0.1 ms pulse of a conventional ITO/ [5 nm CuPc] / [50 nm NPD] /
               [50 nm Alq ] / [1 nm LiF]/ [136 nm Al] OLED. The measurement was
                        3
               performed in the gas phase under ambient conditions with a PtOEP:PS
               sensing fi lm with a 600 nm long-pass fi lter. As such, the intensities during
               the pulses show a combination of the EL tail and the PL. The FWHMs of the
               EL conventional and microcavity OLEDs were 94 and 19 nm, respectively.



          References
                 1.  O. S. Wolfbeis, L. Weis, M. J. P. Leiner, and W. E. Ziegler, Anal. Chem., 60:2028
                  (1988).
                 2.  B. H. Weigl, A. Holobar, W. Trettnak, I. Klimant, H. Kraus, P. O‘Leary, and
                  O. Wolfbeis, J. Biotech., 32:127 (1994).
                 3.  P. Hartmann and W. Ziegler, Anal. Chem., 68:4512 (1996).
                 4.  Z. Rosenzweig and R. Kopelman, Sens. Actuat. B, 35–36:475 (1996).
                 5.  B. D. MacCraith, C. McDonagh, A. K. McEvoy, T. Butler, G. O’Keeffe, and
                  V. Murphy, J. Sol-Gel Sci. Tech., 8:1053 (1997).
                 6.  A. K. McEvoy, C. M. McDonagh, and B. D. MacCraith,  Analyst, 121:785
                  (1996).
                 7.  V. K. Yadavalli, W.-G. Koh, G. J. Lazur, and M. V. Pishko, Sens. Actuat. B, 97:290
                  (2004).
                 8.  M. Vollprecht, F. Dieterle, S. Busche, G. Gauglitz, K-J. Eichhorn, and B. Voit,
                  Anal. Chem., 77:5542 (2005).
                 9.  E. J. Cho and F. V. Bright, Anal. Chem., 73:3289 (2001).
               10. W. Aylott, Z. Chen-Esterlit, J. H. Friedl, R. Kopelman, V. Savvateev, and
                  J. Shinar, U.S. Patent No. 6,331, 438, December 2001.
               11.  V. Savvate’ev, Z. Chen-Esterlit, C.-H. Kim, L. Zou, J. H. Friedl, R. Shinar,
                  J. Shinar, et al., Appl. Phys. Lett., 81:4652 (2002).
               12.  B. Choudhury, R. Shinar, and J. Shinar, in Organic Light Emitting Materials and
                  Devices VII, edited by Z. H. Kafafi and P. A. Lane, SPIE Conf. Proc., 5214:64
                  (2004).
               13.  B. Choudhury, R. Shinar, and J. Shinar, J. Appl. Phys., 96:2949 (2004).
   206   207   208   209   210   211   212   213   214   215   216