Page 213 - Organic Electronics in Sensors and Biotechnology
P. 213
190 Chapter Five
40. Y. Amao, T. Miyashita, and I. Okura, Analyst, 125:871 (2000).
41. Z. J. Fuller, D. W. Bare, K. A. Kneas, W.-Y. Xu, J. N. Demas, and B. A. DeGraff,
Anal. Chem., 75:2670 (2003).
42. Z. Zhou, R. Shinar, A. J. Allison, and J. Shinar, Adv. Func. Mater., 17:3530
(2007).
43. H. Frebel, G.-C. Chemnitius, K. Cammann, R. Kakerow, M. Rospert, and W.
Mokwa, Sens. Actuat. B, 43:87–93 (1997).
44. M. S. Wilson and W. Nie, Anal. Chem., 78:2507–2513 (2006).
45. I. Sugimoto, M. Nakamura, and H. Kuwano, Sens. Actuat. B, 10:117–122 (1993).
46. E. T. Zellers and M. Han, Anal. Chem., 68:2409 (1996).
47. M. S. Freund and N. S. Lewis, Proc. Natl. Acad. Sci. USA, 92:2652–2656 (1995).
48. A. Carbonaro and L. Sohn, Lab on a Chip, 5:1155 (2005).
49. L. Li and D. R. Walt, Anal. Chem., 67:3746 (1995).
50. T. A. Dickinson, J. White, J. S. Kauer, and D. R. Walt, Nature, 382:697 (1996).
51. D. R. Walt, T. Dickinson, J. White, J. Kauer, S. Johnson, H. Engelhardt, J. Sutter,
et al., Biosens. Bioelec., 13:697–699 (1998).
52. K. L. Michael, L. C. Taylor, S. L. Schultz, and D. R. Walt, Anal. Chem., 70:1242–1248
(1998).
53. Maria Dolores Marazuela and Maria Cruz Moreno-Bondi, Anal. Bioanal. Chem.,
372:664–682 (2002).
54. E. J. Cho and F. V. Bright, Anal. Chem., 74:1462 (2002).
55. E. J. Cho, Z. Tao, E. C. Tehan, and F. V. Bright, Anal. Chem., 74:6177 (2002).
56. S. P. A. Fodor, R. P. Rava, X. C. Huang, A. C. Pease, C. P. Holmes, and C. L.
Adams, Nature, 364:555–556 (1993).
57. M. Chee, R. Yang, E. Hubbell, A. Berno, X. C. Huang, D. Stern, J. Winkler, et al.,
Science, 274:610–614 (1996).
58. G. McGall, J. Labadie, P. Brock, G. Wallraff, T. Nguyen, and W. Hinsberg, Proc.
Natl. Acad. Sci. USA, 93:13555–13560 (1996).
59. A. V. Lemmo, J. T. Fisher, H. M. Geysen, and D. J. Rose, Anal. Chem., 69:543–551
(1997).
60. B. G. Healey and D. R. Watt, Anal. Chem., 69:2213–2216 (1997).
61. Y.-H. Liu and T. H. Pantano, Anal. Chim. Acta, 419:215–225 (2000).
62. O. S. Wolfbeis, I. Oehme, N. Papkovskaya, and I. Klimant, Biosens. & Bioelec.,
15:69 (2000).
63. H. Xu, J. W. Aylott, and R. Kopelman, Analyst, 127:1471 (2002).
64. Y. Cai, R. Shinar, Z. Zhou, C. Qian, and J. Shinar, Sens. & Actuat. B, 134:727–735
(2008).
65. http://en.wikipedia.org/wiki/Listeria_monocytogenes
66. C. L. Johnson dissertation, “Methanobactin: A Potential Novel Biopreservative
for Use against the Foodborne Pathogen Listeria Monocytogenes,” Chapters 2
and 3 and references therein, Iowa State University, 2006.
67. B. Ray, in Food Biopreservatives of Microbial Origin, B. Ray and M. Daeschel (eds.),
CRC Press, Boca Raton, Fla., 1991, pp. 25–26.
68. T. Abee, L. Krockel, and C. Hill, Int. J. Food Microbiol., 28:169–185 (1995).
69. J. Cleveland, T. J. Montville, I. F. Nes, and M. L. Chikindas, J. Food Microbiol.,
71:1–20 (2001).
70. D. W. Choi, J. D. Semrau, W. E. Antholine, S. C. Hartsel, R. C. Anderson, J. N.
Carey, A. M. Dreis, et al., J. Inorg. Biochem., 102:1571–1580 (2008).
71. http://en.wikipedia.org/wiki/Bacillus_subtilis#cite_note-Brock-0.
72. Y. Cai, R. Shinar, D. W. Choi, A. DiSpirito, and J. Shinar, in Iowa State University
Institute for Food Safety and Security (IFSS) 2d Annual Symposium, “Food
Safety and Public Health: Production, Distribution, and Policy,” April 12,
2007.
73. American Conference of Governmental Industrial Hygienists (ACGIH), 1999
TLVs and BEIs. Threshold Limit Values for Chemical Substances and Physical Agents,
Biological Exposure Indices, Cincinnati, Ohio, 1999. See also http://www.epa
.gov/ttn/atw/hlthef/hydrazin.html#ref12
74. National Institute for Occupational Safety and Health (NIOSH), Pocket Guide
to Chemical Hazards, U.S. Department of Health and Human Services, Public