Page 213 - Organic Electronics in Sensors and Biotechnology
P. 213

190    Chapter  Five

               40.  Y. Amao, T. Miyashita, and I. Okura, Analyst, 125:871 (2000).
               41.  Z. J. Fuller, D. W. Bare, K. A. Kneas, W.-Y. Xu, J. N. Demas, and B. A. DeGraff,
                  Anal. Chem., 75:2670 (2003).
               42. Z. Zhou, R. Shinar, A. J. Allison, and J. Shinar, Adv. Func. Mater., 17:3530
                  (2007).
               43.  H. Frebel, G.-C. Chemnitius, K. Cammann, R. Kakerow, M. Rospert, and W.
                  Mokwa, Sens. Actuat. B, 43:87–93 (1997).
               44.  M. S. Wilson and W. Nie, Anal. Chem., 78:2507–2513 (2006).
               45.  I. Sugimoto, M. Nakamura, and H. Kuwano, Sens. Actuat. B, 10:117–122 (1993).
               46.  E. T. Zellers and M. Han, Anal. Chem., 68:2409 (1996).
               47.  M. S. Freund and N. S. Lewis, Proc. Natl. Acad. Sci. USA, 92:2652–2656 (1995).
               48.  A. Carbonaro and L. Sohn, Lab on a Chip, 5:1155 (2005).
               49.  L. Li and D. R. Walt, Anal. Chem., 67:3746 (1995).
               50.  T. A. Dickinson, J. White, J. S. Kauer, and D. R. Walt, Nature, 382:697 (1996).
               51.  D. R. Walt, T. Dickinson, J. White, J. Kauer, S. Johnson, H. Engelhardt, J. Sutter,
                  et al., Biosens. Bioelec., 13:697–699 (1998).
               52. K. L. Michael, L. C. Taylor, S. L. Schultz, and D. R. Walt, Anal. Chem., 70:1242–1248
                  (1998).
               53.  Maria Dolores Marazuela and Maria Cruz Moreno-Bondi, Anal. Bioanal. Chem.,
                  372:664–682 (2002).
               54.  E. J. Cho and F. V. Bright, Anal. Chem., 74:1462 (2002).
               55.  E. J. Cho, Z. Tao, E. C. Tehan, and F. V. Bright, Anal. Chem., 74:6177 (2002).
               56.  S. P. A. Fodor, R. P. Rava, X. C. Huang, A. C. Pease, C. P. Holmes, and C. L.
                  Adams, Nature, 364:555–556 (1993).
               57.  M. Chee, R. Yang, E. Hubbell, A. Berno, X. C. Huang, D. Stern, J. Winkler, et al.,
                  Science, 274:610–614 (1996).
               58.  G. McGall, J. Labadie, P. Brock, G. Wallraff, T. Nguyen, and W. Hinsberg, Proc.
                  Natl. Acad. Sci. USA, 93:13555–13560 (1996).
               59.  A. V. Lemmo, J. T. Fisher, H. M. Geysen, and D. J. Rose, Anal. Chem., 69:543–551
                  (1997).
               60.  B. G. Healey and D. R. Watt, Anal. Chem., 69:2213–2216 (1997).
               61.  Y.-H. Liu and T. H. Pantano, Anal. Chim. Acta, 419:215–225 (2000).
               62.  O. S. Wolfbeis, I. Oehme, N. Papkovskaya, and I. Klimant, Biosens. & Bioelec.,
                  15:69 (2000).
               63.  H. Xu, J. W. Aylott, and R. Kopelman, Analyst, 127:1471 (2002).
               64.  Y. Cai, R. Shinar, Z. Zhou, C. Qian, and J. Shinar, Sens. & Actuat. B, 134:727–735
                  (2008).
               65. http://en.wikipedia.org/wiki/Listeria_monocytogenes
               66.  C. L. Johnson dissertation, “Methanobactin: A Potential Novel Biopreservative
                  for Use against the Foodborne Pathogen Listeria Monocytogenes,” Chapters 2
                  and 3 and references therein, Iowa State University, 2006.
               67.  B. Ray, in Food Biopreservatives of Microbial Origin, B. Ray and M. Daeschel (eds.),
                  CRC Press, Boca Raton, Fla., 1991, pp. 25–26.
               68.  T. Abee, L. Krockel, and C. Hill, Int. J. Food Microbiol., 28:169–185 (1995).
               69.  J. Cleveland, T. J. Montville, I. F. Nes, and M. L. Chikindas, J. Food Microbiol.,
                  71:1–20 (2001).
               70.  D. W. Choi, J. D. Semrau, W. E. Antholine, S. C. Hartsel, R. C. Anderson, J. N.
                  Carey, A. M. Dreis, et al., J. Inorg. Biochem., 102:1571–1580 (2008).
               71. http://en.wikipedia.org/wiki/Bacillus_subtilis#cite_note-Brock-0.
               72.  Y. Cai, R. Shinar, D. W. Choi, A. DiSpirito, and J. Shinar, in Iowa State University
                  Institute for Food Safety and Security (IFSS) 2d Annual Symposium, “Food
                  Safety and Public Health: Production, Distribution, and Policy,” April 12,
                  2007.
               73.  American Conference of Governmental Industrial Hygienists (ACGIH), 1999
                  TLVs and BEIs. Threshold Limit Values for Chemical Substances and Physical Agents,
                  Biological Exposure Indices, Cincinnati, Ohio, 1999. See also http://www.epa
                  .gov/ttn/atw/hlthef/hydrazin.html#ref12
               74.  National Institute for Occupational Safety and Health (NIOSH), Pocket Guide
                  to Chemical Hazards, U.S. Department of Health and Human Services, Public
   208   209   210   211   212   213   214   215   216   217   218