Page 320 - Organic Electronics in Sensors and Biotechnology
P. 320

Organic Semiconductor Lasers as Integrated Light Sources for Optical Sensors   297

                 66.  Stroisch, M.: “Organische Halbleiterlaser auf Basis Photonischer-Kristalle,“
                   University Karlsruhe (TH), Ph.D. thesis, 2007.
                67.  Borisov, S. M., and Wolfbeis, O. S.: “Optical biosensors,” Chem. Rev. 108:
                   423–461 (2008).
                 68.  Vahala, K. J.: “Optical microcavities,” Nature 424:839–846 (2003).
                 69.  Potyrailo, R. A.; Hobbs, S. E.; and Hieftje, G. M.: “Optical waveguide sensors
                   in analytical chemistry: Today’s instrumentation, applications and trends for
                   future development,” Fresenius J. Anal. Chem. 362(4):349–373 (1998).
                 70.  Lading, L.; Nielsen, L. B.; Sevel, T.; Center, S. T.; and Brondby, D.: “Comparing
                   biosensors,” Proc. IEEE, 229–232 (2002).
                 71.  Mogensen, K. B.; El-Ali, J.; Wolff, A.; and Kutter, J. P.: “Integration of poly-
                   mer waveguides for optical detection in microfabricated chemical analysis
                   systems,” Appl. Opt. 42(19):4072–4079 (2003).
                 72.  Lakowicz, J. R.: Principles of Fluorescence Spectroscopy, Kluwer Academic, New
                   York, 1999.
                 73.  Nilsson, D.: “Polymer based miniaturized dye lasers for Lab-on-a-chip sys-
                   tems,” Technical University of Denmark (DTU), Dep. Micro and Nanotechn.,
                   Ph.D. thesis, 2005.
                74.  Verpoorte, E.: “Microfluidic chips for clinical and forensic analysis,”
                   Electrophoresis 23(5):677 (2002).
                 75.  Geschke, O.; Klank, H.; and Telleman, P.: Microsystem Engineering of Lab-on-a-
                   Chip Devices, Wiley-VCH, Weinheim, 2004.
                 76.  Bousse, L. J.; Kopf-Sill, A. R.; and Parce, J. W.: “Parallelism in integrated fluidic
                   circuits,” Proc. SPIE, 179–186 (2004).
                 77.  Dittrich, P. S.; and Manz, A.: “Lab-on-a-chip: microfluidics in drug discovery,”
                   Nature 5:210–218 (2006).
                 78.  Mogensen, K. B.; Klank, H.; and Kutter, J. P.: “Recent developments in detec-
                   tion for microfluidic systems,” Electrophoresis 25(21–22):3498–3512 (2004).
                 79.  Rabus, D. G.; Bruendel, M.; Ichihashi, Y.; Welle, A.; Seger, R. A.; and Isaacson,
                   M.: “A bio-fluidic photonic platform based on deep UV modification of poly-
                   mers,” IEEE J. Sel. Top. Quantum Electron. 13(2):214–222 (2007).
                 80.  Kobayashi, J.; Matsuura, T.; Sasaki, S.; and Maruno, T: “Single-mode opti-
                   cal waveguides fabricated from fluorinated polyimides,” Appl. Opt. 37(6):
                   1032–1037 (1998).
                81.  Keil, N.; Yao, H. H.; Zawadzki, C.; Bauer, J.; Bauer, M.; Dreyer, C.; and
                   Schneider, J.: “A thermal all-polymer arrayed-waveguide grating multi-
                   plexer,” Electron. Lett. 37(9):579–580 (2001).
                 82.  Tomlinson, W. J.; Kaminow, I. P.; Chandross, A.; Fork, R. L.; and Silvast, W. T.:
                   “Photoinduced refractive index increase in poly(methylmethacrylate) and its
                   applications,” Appl. Phys. Lett. 16(12):486–489 (1970).
                 83.  Keil, N.; Yao, H. H.; and Zawadzki, C.: “(2 × 2) Digital optical switch realised
                   by low cost polymer waveguide technology,” Electron. Lett. 32(16):1470–1471
                   (1996).
                 84.  Keil, N.; Strebel, B. N.; Yao, H. H.; Zawadzki, C.; and Hwang, W. Y.: “Optical
                   polymer waveguide devices and their applications to integrated optics and
                   optical signal processing,” Proc. SPIE, 1774:130–141 (1993).
                 85.  Kragl, H.; Hohmann, R.; Marheine, C.; Pott, W.; and Pompe, G.: “Low cost
                   monomode, integrated optics polymeric components with passive fibre-chip
                   coupling,” Electron. Lett. 33(24):2036–2037 (1997).
                 86.  Bauer, H. D.; Ehrfeld, W.; Harder, M.; Paatzsch, T; Popp, M; and Smaglinski;
                   I.: “Polymer waveguide devices with passive pigtailing: An application of
                   LIGA technology,” Synth. Met. 115(1–3):13–20 (2000).
                87.  Ruck, D. M.; Brunner, S.; Tinschert, K.; and Frank, W. F. X.: “Production
                   of buried waveguides in PMMA by high energy ion implantation,” Nucl.
                   Instrum. Methods Phys. Res., Sect. B 106(1–4):447–451 (1995).
                 88.  Hong, W.; Woo, H. J.; Choi, H. W.; Kim, Y. S.; and Kim, G. D.: “Optical prop-
                   erty modification of PMMA by ion-beam implantation,” Appl. Surf. Sci. 169:
                   428–432 (2001).
   315   316   317   318   319   320   321   322   323   324   325