Page 320 - Organic Electronics in Sensors and Biotechnology
P. 320
Organic Semiconductor Lasers as Integrated Light Sources for Optical Sensors 297
66. Stroisch, M.: “Organische Halbleiterlaser auf Basis Photonischer-Kristalle,“
University Karlsruhe (TH), Ph.D. thesis, 2007.
67. Borisov, S. M., and Wolfbeis, O. S.: “Optical biosensors,” Chem. Rev. 108:
423–461 (2008).
68. Vahala, K. J.: “Optical microcavities,” Nature 424:839–846 (2003).
69. Potyrailo, R. A.; Hobbs, S. E.; and Hieftje, G. M.: “Optical waveguide sensors
in analytical chemistry: Today’s instrumentation, applications and trends for
future development,” Fresenius J. Anal. Chem. 362(4):349–373 (1998).
70. Lading, L.; Nielsen, L. B.; Sevel, T.; Center, S. T.; and Brondby, D.: “Comparing
biosensors,” Proc. IEEE, 229–232 (2002).
71. Mogensen, K. B.; El-Ali, J.; Wolff, A.; and Kutter, J. P.: “Integration of poly-
mer waveguides for optical detection in microfabricated chemical analysis
systems,” Appl. Opt. 42(19):4072–4079 (2003).
72. Lakowicz, J. R.: Principles of Fluorescence Spectroscopy, Kluwer Academic, New
York, 1999.
73. Nilsson, D.: “Polymer based miniaturized dye lasers for Lab-on-a-chip sys-
tems,” Technical University of Denmark (DTU), Dep. Micro and Nanotechn.,
Ph.D. thesis, 2005.
74. Verpoorte, E.: “Microfluidic chips for clinical and forensic analysis,”
Electrophoresis 23(5):677 (2002).
75. Geschke, O.; Klank, H.; and Telleman, P.: Microsystem Engineering of Lab-on-a-
Chip Devices, Wiley-VCH, Weinheim, 2004.
76. Bousse, L. J.; Kopf-Sill, A. R.; and Parce, J. W.: “Parallelism in integrated fluidic
circuits,” Proc. SPIE, 179–186 (2004).
77. Dittrich, P. S.; and Manz, A.: “Lab-on-a-chip: microfluidics in drug discovery,”
Nature 5:210–218 (2006).
78. Mogensen, K. B.; Klank, H.; and Kutter, J. P.: “Recent developments in detec-
tion for microfluidic systems,” Electrophoresis 25(21–22):3498–3512 (2004).
79. Rabus, D. G.; Bruendel, M.; Ichihashi, Y.; Welle, A.; Seger, R. A.; and Isaacson,
M.: “A bio-fluidic photonic platform based on deep UV modification of poly-
mers,” IEEE J. Sel. Top. Quantum Electron. 13(2):214–222 (2007).
80. Kobayashi, J.; Matsuura, T.; Sasaki, S.; and Maruno, T: “Single-mode opti-
cal waveguides fabricated from fluorinated polyimides,” Appl. Opt. 37(6):
1032–1037 (1998).
81. Keil, N.; Yao, H. H.; Zawadzki, C.; Bauer, J.; Bauer, M.; Dreyer, C.; and
Schneider, J.: “A thermal all-polymer arrayed-waveguide grating multi-
plexer,” Electron. Lett. 37(9):579–580 (2001).
82. Tomlinson, W. J.; Kaminow, I. P.; Chandross, A.; Fork, R. L.; and Silvast, W. T.:
“Photoinduced refractive index increase in poly(methylmethacrylate) and its
applications,” Appl. Phys. Lett. 16(12):486–489 (1970).
83. Keil, N.; Yao, H. H.; and Zawadzki, C.: “(2 × 2) Digital optical switch realised
by low cost polymer waveguide technology,” Electron. Lett. 32(16):1470–1471
(1996).
84. Keil, N.; Strebel, B. N.; Yao, H. H.; Zawadzki, C.; and Hwang, W. Y.: “Optical
polymer waveguide devices and their applications to integrated optics and
optical signal processing,” Proc. SPIE, 1774:130–141 (1993).
85. Kragl, H.; Hohmann, R.; Marheine, C.; Pott, W.; and Pompe, G.: “Low cost
monomode, integrated optics polymeric components with passive fibre-chip
coupling,” Electron. Lett. 33(24):2036–2037 (1997).
86. Bauer, H. D.; Ehrfeld, W.; Harder, M.; Paatzsch, T; Popp, M; and Smaglinski;
I.: “Polymer waveguide devices with passive pigtailing: An application of
LIGA technology,” Synth. Met. 115(1–3):13–20 (2000).
87. Ruck, D. M.; Brunner, S.; Tinschert, K.; and Frank, W. F. X.: “Production
of buried waveguides in PMMA by high energy ion implantation,” Nucl.
Instrum. Methods Phys. Res., Sect. B 106(1–4):447–451 (1995).
88. Hong, W.; Woo, H. J.; Choi, H. W.; Kim, Y. S.; and Kim, G. D.: “Optical prop-
erty modification of PMMA by ion-beam implantation,” Appl. Surf. Sci. 169:
428–432 (2001).