Page 321 - Organic Electronics in Sensors and Biotechnology
P. 321

298    Chapter  Seven

                89.  Schoesser, A.; Knoedler, B; Tschudi, T. T.; Frank, W. F.; Stelmasyzk, A.;
                   Muschert, D.; Rueck, D. M., et al.: “Optical components in polymers,” Proc.
                   SPIE, 2540:110–117 (1995).
                90.  Choi, J. O.; Moore, J.  A.; Corelli, J. C.; Silverman, J.; and Balkhru, H.:
                   “Degradation of poly(methylmethacrylate) by deep ultraviolet, x-ray, electron
                   beam, and proton beam irradiations,” J. Vac. Sci. Technol., B 6(6):2286–2289
                   (1988).
                 91.  Jellinek, H. H. G.: Aspects of Degradation and Stabilization of Polymers, Elsevier,
                   Amsterdam, 1978.
                 92.  Wochnowski, C.; Metev, S.; and Sepold, G.: “UV-laser-assisted modification
                   of the optical properties of polymethylmethacrylate,” Appl. Surf. Sci. 154–155:
                   706–711 (2000).
                 93.  Schoesser, A.; Tschudi, T. T.; Frank, W. F.; and Pozzi, F.: “Spectroscopic study
                   of surface effects in polymer waveguides generated by ionizing radiation
                   related to guiding properties,” Proc. SPIE, 2851:73–81 (1996).
                 94.  Rabus, D.; Henzi, P.; and Mohr, J.: “Photonic integrated circuits by DUV-
                   induced modification of polymers,” IEEE Phot. Technol. Lett. 17(3):591–593 (2005).
                 95.  Bruendel, M.; and Rabus, D. G.: “1 × 2 and 1 × 3 multimode interference
                   couplers fabricated by hot embossing and DUV-induced modification of poly-
                   mers,” LEOS Annual Meeting, Montreal, 2006.
                 96.  Punke, M.; Mozer, S.; Stroisch, M.; Heinrich, M. P.; Lemmer, U.; Henzi, P.;
                   and Rabus, D. G.: “Coupling of organic semiconductor amplified spontane-
                   ous emission into polymeric single mode waveguides patterned by deep-UV
                   irradiation,” IEEE Phot. Technol. Lett. 19:61–63 (2007).
                 97.  Punke, M.: “Organische Halbleiterbauelemente für mikrooptische Systeme,“
                   Universitätsverlag Karlruhe, Ph.D. thesis, 2008.
                 98.  Hofmann, O.; Miller, P.; Sullivan, P.; Jones, T. S.; deMello, J. C.; Bradley, D. C.;
                   and deMello, A. J.: “Thin-film organic photodiodes as integrated detectors for
                   microscale chemiluminescence assays,” Sens. Actuat. B, 106:878–884 (2005).
                 99.  Ohmori, Y.; Kajii, H.; Kaneko, M.; Yoshino, K.; Ozaki, M.; Fujii, A.; Hikita,
                   M., et al.: “Realization of polymer optical integrated devices utilizing organic
                   light-emitting diodes and photodetectors fabricated on a polymer wave-
                   guide,” IEEE J. Sel. Top. Quantum Electron. 10(1):70–78 (2004).
               100.  Punke, M.; Valouch, S., Kettlitz, S. W.; Gerken, M.; and Lemmer, U.: “Optical
                   data link employing organic light-emitting diodes and organic photodiodes
                   as optoelectronic components,” J. Lightwave Technol. 26(7):816–823 (2008).
               101.  Peumans, P.; Bulovic, V.; and Forrest, S. R.: “Efficient, high-bandwidth organic
                   multilayer photodetectors,” Appl. Phys. Lett. 76(26):3855–3857 (2000).
               102.  Morimune, T.; Kajii, H.; and Ohmori, Y.: “High-speed organic photodetectors
                   using heterostructure with phthalocyanine and perylene derivative,” Jpn. J.
                   Appl. Phys. 45(1B):546–549 (2006).
               103.  Komatsu, T.; Kaneko, S.; Miyanishi, S.; Sakanoue, K.; Fujita, K.; and Tsutsui,
                   T.: “Photoresponse studies of bulk heterojunction organic photodiodes,” Jpn.
                   J. Appl. Phys. 43(11A):L1439–L1441 (2004).
               104.  Punke, M.; Valouch, S.; Kettlitz, S. W.; Christ, N.; Gärtner, C.; Gerken, M.;
                   and Lemmer, U.: “Dynamic characterization of organic bulk heterojunction
                   photodetectors,” Appl. Phys. Lett. 91:071118 (2007).
               105.  Koeppe, R.; Müller, J. G.; Lupton, J. M.; Feldmann, J.; Scherf, U.; and Lemmer,
                   U.: “One- and two-photon photocurrents from tunable organic microcavity
                   photodiodes,” Appl. Phys. Lett. 82:2601 (2003).
               106.  Brabec, C. J.; Padinger, F.; Hummelen, J. C. ; Janssen, R. A. J.; and Sariciftci,
                   N. S.: “Realization of large area flexible fullerene-conjugated polymer pho-
                   tocells: A route to plastic solar cells,” Synth. Met. 102:861 (1999).
               107.  Sariciftci, N. S.: “Polymer photovoltaic materials,” Curr. Opin. Solid-State
                   Mater. Sci. 4:373–378 (1999).
               108.  Peters, S.; Sui, Y.; Glöckler, F.; Lemmer, U.; and Gerken, M.: “Organic photo
                   detectors for an integrated thin-film spectrometer,” Proc. SPIE 6765:676503–1
                   (2007).
   316   317   318   319   320   321   322   323   324   325   326