Page 319 - Organic Electronics in Sensors and Biotechnology
P. 319
296 Chapter Seven
45. Deubel, M.; von Freymann, G.; Wegener, M.; Pereira, S.; Busch, K.; and
Soukoulis, C. M.: “Direct laser writing of three-dimensional photonic-crystal
templates for telecommunications,” Nature Mater. 3(7):444–447 (2004).
46. Li, L., and Fourkas, J. T.: “Multiphoton polymerization,” Mater. Today 10(6):
30–37 (2007).
47. Sun, H. B.; Maeda, M.; Takada, K.; Chon, J. W. M.; Gu, M.; and Kawata, S.:
“Experimental investigation of single voxels for laser nanofabrication via
two-photon photopolymerization,” Appl. Phys. Lett. 83:819–821 (2003).
48. Gombert, A.; Bläsi, B.; Bühler, C.; Nitz, P.; Mick, J.; Hoßfeld, W.; and
Niggemann, M.: “Some application cases and related manufacturing tech-
niques for optically functional microstructures on large areas,” Opt. Eng. 43:
2525–2533 (2004).
49. Srinivasan, R., and Braren, B: “Ultraviolet laser ablation of organic polymers,”
Chem. Rev., 89:1303–1316 (1989).
50. Stroisch, M.; Woggon, T.; Lemmer, U.; Bastian, G.; Violakis, G.; and Pissadakis,
S.: “Organic semiconductor distributed feedback laser fabricated by direct
laser interference ablation,” Opt. Exp. 15(7):3968–3973 (2007).
51. Chou, S. Y.; Krauss, P. R.; and Renstrom, P. J.: “Imprint lithography with 25-
nanometer resolution,” Science 272(5258):85 (1996).
52. Hanemann, T.; Heckele, M.; and Piotter, V.: “Current status of micromolding
technology,” Polymer News 25:224–229 (2000).
53. Bacher, W.; Menz, W.; and Mohr, J.: “The LIGA technique and its potential for
microsystems––A survey,” Ind. Electroni., IEEE Trans. 42(5):431–441 (1995).
54. Mappes, T.; Worgull, M.; Heckele, M.; and Mohr, J.: “Submicron polymer
structures with X-ray lithography and hot embossing,” Microsyst. Technol.,
DOI:10.1007/s00542-007-0499-6, 14:1721–1725 (2008).
55. Becker, E. W.; Ehrfeld, W.; Hagmann, P.; Maner, A.; and Münchmeyer, D.:
“Fabrication of microstructures with high aspect ratios and great structural
heights by synchrotron radiation lithography, galvanoforming and plastic
molding (LIGA process),” Microelectron. Eng. 4:35–56 (1986).
56. Kim, I., and Mentone, P. F.: “Electroformed nickel stamper for light guide
panel in LCD back light unit,” Electrochim. Acta. 52:1805–1809 (2006).
57. Gale, M. T.: “Replication techniques for diffractive optical elements,”
Microelectron. Eng. 34(3):321–339 (1997).
58. Meier, M.; Dodabalapur, A.; Rogers, J. A.; Slusher, R. E.; Mekis, A.; and Timko,
A.: “Emission characteristics of two-dimensional organic photonic crystal
lasers fabricated by replica molding,” J. Appl. Phys. 86(7):3502–3507 (1999).
59. Berggren, M.; Dodalapur, A.; and Slusher, R. E.: “Organic solid-state lasers
with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72(4):410–411
(1998).
60. Rogers, J. A.; Meier, M.; and Dodabalapur, A.: “Using printing and molding
techniques to produce distributed feedback and Bragg reflector resonators
for plastic lasers,” Appl. Phys. Lett. 73:1766 (1998).
61. Rogers, J. A.; Meier, M.; Dodabalapur, A.; Laskowski, E. J.; and Cappuzzo,
M. A.: “Distributed feedback ridge waveguide lasers fabricated by nanoscale
printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74(22):
3257–3259 (1999).
62. Bender, M.; Plachetka, U.; Ran, J.; Fuchs, A.; Vratzov, B.; Kurz, H.; Glinsner, T.,
et al.: “High resolution lithography with PDMS molds,” J. Vac. Sci. Technol.,
B 22:3229–3232 (2004).
63. Nilsson, D.; Balslev, S.; Gregersen, M. M.; and Kristensen, A.: “Microfabricated
solid-state dye lasers based on a photodefinable polymer,” Appl. Opt. 44:
4965–4971 (2005).
64. Muzio, E.; Seidel, P.; Shelden, G.; and Canning, J.: “An overview of cost of
ownership for optical lithography at the 100 nm and 70 nm generations,”
Semicond. Fabtech (11):191–194 (2000).
65. Sreenivasan, S. V.; Willson, C. G.; Schumaker, N. E.; and Resnick, D. J.: “Cost of
ownership analysis for patterning using step and flash imprint lithography,”
Proc. SPIE, 4688 (2002).