Page 318 - Organic Electronics in Sensors and Biotechnology
P. 318

Organic Semiconductor Lasers as Integrated Light Sources for Optical Sensors   295

                 25.  Punke, M.; Woggon, T.; Stroisch, S.; Ebenhoch B.; Geyer U.;  Karnutsch, C.;
                   Gerken, M, et al.: “Organic semiconductor lasers as integrated light sources
                   for optical sensor systems,” Proc. SPIE 6659:665909 (2007).
                26.  Schneider, D.; Lemmer, U.; Riedl, T.; and Kowalsky, W.: “Low threshold
                   organic semiconductor lasers,” Organic Light Emitting Devices, K. Müllen and
                   U. Scherf (eds.), Wiley-VCH, Weinheim, 2005.
                27.  Schneider, D.: “Organische Halbleiterlaser,” Technical University
                   Braunschweig, Ph.D. thesis, 2005.
                 28.  Turnbull, G. A.; Andrew, P; Barnes, W. L.; and Samuel, I. D. W.: “Operating
                   characteristics of a semiconducting polymer laser pumped by a microchip
                   laser,” Appl. Phys. Lett. 82:313 (2003).
                 29.  Riedl, T.; Rabe, T.; Johannes, H. H.; Kowalsky, W; Wang, J.; Weimann, J.; Hinze,
                   P., et al.: “Tunable organic thin-film laser pumped by an inorganic violet diode
                   laser,” Appl. Phys. Lett. 88:241116 (2006).
                 30.  Karnutsch, C.; Haug, V.; Gärtner, C.; Lemmer, U.; Farrell, T.; Nehls, B.; Scherf,
                   U., et al.: “Low threshold blue conjugated polymer DFB lasers,” CLEO, CFJ3
                   (2006).
                31.  Vasdekis, A. E.; Tsiminis, G.; Ribierre, J. C.; O’Faolain, L.; Krauss, T. F.; Turnbull,
                   G. A.; and Samuel, I. D. W.: “Diode pumped distributed Bragg reflector lasers
                   based on a dye-to-polymer energy transfer blend,“ Opt. Exp. 14(20):9211–9216
                   (2006).
                 32.  Yang, Y.; Turnbull, G. A.; and Samuel, I. D. W.: “Hybrid optoelectronics:
                   A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett.
                   92:163306 (2008).
                 33.  Campbell,V.; Smith, D.; Neef, C.; and Ferraris, J.: “Charge transport in poly-
                   mer light-emitting diodes at high current density,” Appl. Phys. Lett. 75(6):
                   841–843 (1999).
                 34.  Yokoyama, W.; Sasabe, H.; and Adachi, C.: “Carrier injection and transport of
                                                         2
                   steady-state high current density exceeding 1000 A/cm  in organic thin films,”
                   Jpn. J. Appl. Phys. 42:L1353–L1355 (2003).
                35.  Yamamoto, H.; Kasajima, H.; Yokoyama, W.; Sasabe, H.; and Adachi, C.:
                   “Extremely-high-density carrier injection and transport over 12,000 A/cm   2
                   into organic thin films,” Appl. Phys. Lett. 86:083502 (2005).
                 36.  Gärtner, C.; Karnutsch, C.; Pflumm, C.; and Lemmer, U.: “Numerical device
                   simulation of double heterostructure organic laser diodes including current
                   induced absorption processes,” IEEE J. Quantum Electron. 43(11):1006–1017
                   (2007).
                 37.  Kavc, T.; Langer, G.; Kern, W.; Kranzelbinder, G.; Toussaere, E.; Turnbull, G.
                   A.; Samuel, I. D. W., et al.: “Index and relief gratings in polymer films for
                   organic distributed feedback lasers,”  Chem. Mat. 14:4178–4185 (2002).
                 38.  Lawrence, J. R.; Andrew, P.; Barnes, W. L.; Buck, M; Turnbull, G. A.; and
                   Samuel, I. D. W.: “Optical propertiers of light-emitting polymer directly pat-
                   terned by soft lithography,” Appl. Phys. Lett. 81:1955–1958 (2002).
                 39.  Pisignano, D.; Persano, L.; Visconti, P; Cingolani, R.; and Gigli, G.: “Oligomer-
                   based organic distributed feedback lasers by room-temperature nanoimprint
                   lithography,” Appl. Phys. Lett. 83:2545 (2003).
                40.  Forberich, K.: “Organische Photonische-Kristall-Laser,” University of
                   Freiburg, Ph.D. thesis, 2005.
                 41.  Wang, J.; Weimann, T.; Hinze, P.; Ade, G.; Schneider, D.; Rabe, T.; Riedl, T., et
                   al.: “A continuously tunable organic DFB laser,” Microelectronic Eng. 78–79:
                   364–368 (2005).
                42.  Gadegaard, N., and McCloy D.: “Direct stamp fabrication for NIL and hot
                   embossing using HSQ,” Microelectronic Eng. 84 (12):2785–2789 (2007).
                43.  Sun, H. B.; Kawakami, T.; Xu, Y.; Ye, J.-Y.; Matuso, S.; Misawa, H.; Miwa, M.,
                   et al.: “Real three-dimensional microstructures fabricated by photopolymeriza-
                   tion of resins through two-photon absorption,” Opt. Lett. 25(5):1110–1112 (2000).
                 44.  Sun, H. B., and Kawata, S.: “Two-photon laser precision microfabrication and
                   its applications to micro–nano devices and systems,” J. Lightwave Techn. 21(3):
                   624–633 (2003).
   313   314   315   316   317   318   319   320   321   322   323