Page 142 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 142

5.2 Generalized angular momentum                 133
                                                     ^   ^       ^
                                                    [J x , J y ] ˆ i"J z                 (5:13a)
                                                     ^   ^       ^
                                                    [J y , J z ] ˆ i"J x                 (5:13b)
                                                      ^  ^       ^
                                                    [J z , J x ] ˆ i"J y                 (5:13c)
                          The square of the angular-momentum operator is de®ned by
                                                ^
                                                                 ^
                                                            ^
                                                    ^ : ^
                                                                  2
                                                 2
                                                             2
                                               J ˆ J J ˆ J ‡ J ‡ J    ^ 2                 (5:14)
                                                             x    y    z
                                            ^
                                                       ^
                                                ^
                                                                                    ^ 2
                        and is hermitian since J x , J y , and J z are hermitian. The operator J commutes
                                                      ^
                                                              ^
                                                          ^
                        with each of the three operators J x , J y , J z . We ®rst evaluate the commutator
                         ^ 2 ^
                        [J , J z ]
                                           ^
                                                 ^
                                                               ^
                             ^
                                       ^
                                                     ^
                                ^
                                                           ^
                                                  2
                                                            2
                              2
                                        2
                           [J , J z ] ˆ [J , J z ] ‡ [J , J z ] ‡ [J , J z ]
                                        x         y         z
                                      ^ ^    ^     ^   ^ ^     ^ ^    ^     ^   ^ ^
                                   ˆ J x [J x , J z ] ‡ [J x , J z ]J x ‡ J y [J y , J z ] ‡ [J y , J z ]J y
                                          ^ ^      ^ ^       ^ ^      ^ ^
                                   ˆÿi"J x J y ÿ i"J y J x ‡ i"J y J x ‡ i"J x J y
                                   ˆ 0                                                   (5:15a)
                                           ^
                        where the fact that J z commutes with itself and equations (3.4b) and (5.13)
                        have been used. By similar expansions, we may also show that
                                                       ^
                                                           ^
                                                        2
                                                      [J , J x ] ˆ 0                     (5:15b)
                                                          ^
                                                       ^
                                                        2
                                                      [J , J y ] ˆ 0                     (5:15c)
                                                                                           ^
                                                                                    ^
                                                                                       ^
                                            ^ 2
                          Since the operator J commutes with each of the components J x , J y , J z of
                        ^
                        J, but the three components do not commute with each other, we can obtain
                                                     ^ 2
                        simultaneous eigenfunctions of J and one, but only one, of the three compo-
                               ^
                                                                                  ^
                        nents of J. Following the usual convention, we arbitrarily select J z and seek the
                                                             ^
                                                      ^ 2
                        simultaneous eigenfunctions of J and J z . Since angular momentum has the
                                                                                      2
                        same dimensions as ", we represent the eigenvalues of J ^ 2  by ë" and the
                                       ^
                        eigenvalues of J z by m", where ë and m are dimensionless and are real
                                       ^
                                ^ 2
                        because J and J z are hermitian. If the corresponding orthonormal eigenfunc-
                        tions are denoted in Dirac notation by jëmi, then we have
                                                   ^ 2         2
                                                   J jëmiˆ ë" jëmi                       (5:16a)
                                                   ^           2
                                                   J z jëmiˆ m" jëmi                     (5:16b)
                        We implicitly assume that these eigenfunctions are uniquely determined by
                        only the two parameters ë and m.
                                                         ^ 2
                                                  ^ 2
                          The expectation values of J and J are, according to (3.46), and (5.16)
                                                          z
                                                ^
                                                          ^
                                                           2
                                                 2
                                              hJ iˆhëmjJ jëmiˆ ë"     2
                                                                     2 2
                                                 2
                                                ^
                                                           2
                                                          ^
                                              hJ iˆhëmjJ jëmiˆ m "
                                                 z
                                                           z
   137   138   139   140   141   142   143   144   145   146   147