Page 147 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 147

138                          Angular momentum


                                           5.3 Application to orbital angular momentum
                             We now apply the results of the quantum-mechanical treatment of generalized
                             angular momentum to the case of orbital angular momentum. The orbital
                                                        ^
                             angular momentum operator L, de®ned in Section 5.1, is identi®ed with the
                                                                                      ^
                                                                                               ^
                                      ^
                                                                               ^ 2 ^
                             operator J of Section 5.2. Likewise, the operators L , L x , L y , and L z are
                                           ^ 2 ^
                                                          ^
                                                  ^
                             identi®ed with J , J x , J y , and J z , respectively. The parameter j of Section 5.2
                             is denoted by l when applied to orbital angular momentum. The simultaneous
                                                    ^
                                             ^ 2
                             eigenfunctions of L and L z are denoted by jlmi, so that we have
                                        ^ 2               2
                                        L jlmiˆ l(l ‡ 1)" jlmi                                (5:28a)
                                        ^                     m ˆÿl, ÿl ‡ 1, ... , l ÿ 1, l   (5:28b)
                                        L z jlmiˆ m"jlmi,
                               Our next objective is to ®nd the analytical forms for these simultaneous
                             eigenfunctions. For that purpose, it is more convenient to express the operators
                             ^   ^  ^      ^ 2
                             L x , L y , L z , and L in spherical polar coordinates r, è, j rather than in cartesian
                             coordinates x, y, z. The relationships between r, è, j and x, y, z are shown in
                             Figure 5.1. The transformation equations are
                                                   x ˆ r sin è cos j                          (5:29a)
                                                   y ˆ r sin è sin j                          (5:29b)
                                                   z ˆ r cos è                                (5:29c)

                                                                  2 1=2
                                                              2
                                                         2
                                                   r ˆ (x ‡ y ‡ z )                           (5:29d)
                                                                      2
                                                                          2 1=2
                                                                 2
                                                          ÿ1
                                                   è ˆ cos (z=(x ‡ y ‡ z )    )               (5:29e)
                                                          ÿ1
                                                  j ˆ tan (y=x)                               (5:29f)
                                                           z



                                                                r
                                                            θ



                                                                             y
                                                           j


                                                      x
                                              Figure 5.1 Spherical polar coordinate system.
   142   143   144   145   146   147   148   149   150   151   152