Page 151 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 151

142                          Angular momentum
                              2ð ð
                             … …

                                   Y (è, j)Y lm (è, ö) sin è dè dj
                                    lm
                              0  0
                                                        ð                      2ð
                                                       …                      …


                                                     ˆ   È (è)È lm (è) sin è dè  Ö (j)Ö m (j)dj ˆ 1
                                                           lm
                                                                                   m
                                                        0                      0
                             where the è- and j-dependent parts of the volume element dô are included in
                             the integration. For convenience, we require that each of the two factors È lm (è)
                             and Ö m (j) be normalized. Writing Ö m (j)as
                                                         Ö m (j) ˆ Ae imj
                             we ®nd that
                                               2ð                          2ð
                                              …                           …
                                                 (Ae imj    imj )dj ˆjAj 2   dj ˆ 1
                                                       ) (Ae
                                               0                   p       0
                                                                     
                                                                iá
                                                           A ˆ e = 2ð
                             giving
                                                                   1   imj
                                                        Ö m (j) ˆ p  e                   (5:40)
                                                                   2ð
                                                                                         iá
                             where we have arbitrarily set á equal to zero in the phase factor e associated
                             with the normalization constant.
                               The function È l,ÿl (è) is given by equation (5.39) and the value of the
                             constant of integration A l is determined by the normalization condition
                                     ð                                  ð
                                    …                                  …
                                                                      2     2l‡1
                                       [È l,ÿl (è)] È l,ÿl (è) sin è dè ˆjA l j  sin  è dè ˆ 1  (5:41)
                                     0                                  0
                             We need to evaluate the integral I l
                                            ð                ÿ1                1
                                          …                 …                …
                                                                     2 l
                                                                                       2 l
                                      I l    sin 2l‡1 è dè ˆÿ  (1 ÿ ì ) dì ˆ     (1 ÿ ì ) dì
                                            0                1                 ÿ1
                             where we have de®ned the variable ì by the relation
                                                            ì   cos è                          (5:42)
                             so that
                                                     2
                                                            2
                                                1 ÿ ì ˆ sin è,      dì ˆÿsin è dè
                             The integral I l may be transformed as follows
                                    …                  …                           …
                                     1                  1                           1  ì
                                                                                                2 l
                                                                2 lÿ1 2
                                             2 lÿ1
                               I l ˆ   (1 ÿ ì )   dì ÿ    (1 ÿ ì )  ì dì ˆ I lÿ1 ‡       d(1 ÿ ì )
                                     ÿ1                 ÿ1                          ÿ1  2l
                                           1        2 l
                                          …
                                              (1 ÿ ì )             1
                                 ˆ I lÿ1 ÿ             dì ˆ I lÿ1 ÿ  I l
                                           ÿ1    2l                2l
                             where we have integrated by parts and noted that the integrated term vanishes.
                             Solving for I l , we obtain a recurrence relation for the integral
   146   147   148   149   150   151   152   153   154   155   156