Page 153 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 153

144                          Angular momentum

                             For m equal to ÿl ‡ 1, equation (5.38a) gives
                                                  1       ^                   1         ^ 2
                                   Y l,ÿl‡2 ˆ p   L ‡ Y l,ÿl‡1 ˆ p   L Y l,ÿl
                                                                                         ‡
                                               2(2l ÿ 1) "              2(2l)(2l ÿ 1) " 2
                             where equation (5.46) has been introduced in the last term. If we continue in
                             the same pattern, we ®nd
                                             1       ^                        1              ^ 3
                              Y l,ÿl‡3 ˆ p   L ‡ Y l,ÿl‡2 ˆ p   L Y l,ÿl
                                                                     :
                                                                                              ‡
                                          3(2l ÿ 2) "              2 3(2l)(2l ÿ 1)(2l ÿ 2) " 3
                                      .
                                      .
                                      .
                                       s  
                                          (2l ÿ k)! 1  k
                              Y l,ÿl‡k ˆ             ^
                                                     L Y l,ÿl
                                           k!(2l)! " k  ‡
                             where k is the number of steps in this sequence. We now set k ˆ l ‡ m in the
                             last expression to obtain
                                                      s 
                                                          (l ÿ m)!    1   l‡m
                                                                         L
                                                Y lm ˆ                   ^    Y l,ÿl           (5:47)
                                                        (l ‡ m)!(2l)! " l‡m  ‡
                             If the number of steps k is less than the value of l, then the integer m is
                             negative; if k equals l, then m is zero; if k is greater than l, then m is positive;
                             and ®nally if k equals 2l, then m equals its largest value of l.
                                                                              ^ l‡m
                               The next step in this derivation is the evaluation of L  Y l,ÿl using equation
                                                                               ‡
                                                   ^
                             (5.37a). If the operator L ‡ in (5.37a) acts on Y l,ÿl (è, j) as given in (5.45), we
                             have

                               ^             ij  @  ‡ i cot è  @  sin è e ÿilj
                                                                   l
                               L ‡ Y l,ÿl ˆ c l "e
                                                @è         @ö

                                                                     l
                                       ˆ c l "e ÿi(lÿ1)j  d  ‡ l cot è sin è
                                                     dè
                                                      d           sin è
                                                                     2l
                                       ˆ c l "e ÿi(lÿ1)j  ‡ l cot è
                                                     dè           sin è
                                                                     l

                                                      1   d
                                                               2l
                                       ˆ c l "e ÿi(lÿ1)j     sin è ÿ l sin lÿ1 è cos è ‡ l sin lÿ1 è cos è
                                                     sin è dè
                                                       l
                                                        1       d
                                                                       2l
                                       ˆÿc l "e ÿi(lÿ1)j            sin è
                                                     sin lÿ1 è d(cos è)
                             where for brevity we have de®ned c l as
                                                                r 
                                                             1    (2l ‡ 1)!
                                                        c l ˆ                                  (5:48)
                                                            2 l!     4ð
                                                             l
   148   149   150   151   152   153   154   155   156   157   158