Page 152 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 152

5.3 Application to orbital angular momentum          143
                                                           2l
                                                    I l ˆ      I lÿ1                      (5:43)
                                                         2l ‡ 1
                        Since I 0 is given by
                                                         …
                                                          1
                                                    I 0 ˆ   dì ˆ 2
                                                          ÿ1
                        we can obtain I l by repeated application of equation (5.43) starting with I 0
                                           (2l)(2l ÿ 2)(2l ÿ 4)  ...  2   2 2l‡1 (l!) 2
                                     I l ˆ                           I 0 ˆ
                                         (2l ‡ 1)(2l ÿ 1)(2l ÿ 3)  ...  3  (2l ‡ 1)!
                        where we have noted that
                                                                     l
                                                (2l)(2l ÿ 2)  ...  2 ˆ 2 l!
                          (2l ‡ 1)(2l ÿ 1)(2l ÿ 3)  ...  3

                                    (2l ‡ 1)(2l)(2l ÿ 1)(2l ÿ 2)(2l ÿ 3)  ...  3 3 2 3 1  (2l ‡ 1)!
                                  ˆ                                                ˆ
                                                                                         l
                                                   (2l)(2l ÿ 2)  ...  2                2 l!
                        Substituting this result into equation (5.41), we ®nd that
                                                           r  
                                                         1    (2l ‡ 1)!
                                                 jA l jˆ
                                                         l
                                                        2 l!     2
                                                                         iá
                        It is customary to let á equal zero in the phase factor e for È l,ÿl (è), so that
                                                           r 
                                                        1    (2l ‡ 1)!  l
                                             È l,ÿl (è) ˆ            sin è                (5:44)
                                                       2 l!     2
                                                        l
                        Combining equations (5.35), (5.40) and (5.44), we obtain the normalized
                        eigenfunction
                                                          r 
                                                       1    (2l ‡ 1)!  l  ÿilj
                                         Y l,ÿl (è, j) ˆ            sin è e               (5:45)
                                                      2 l!    4ð
                                                       l

                        Spherical harmonics
                        The functions Y lm (è, j) are known as spherical harmonics and may be
                                                                                             ^
                        obtained from Y l,ÿl (è, j) by repeated application of the raising operator L ‡
                        according to (5.38a). By this procedure, the spherical harmonics Y l,ÿl‡1 (è, j),
                        Y l,ÿl‡2 (è, j), ... , Y l,ÿ1 (è, j), Y l0 (è, j), Y l1 (è, j), ... , Y ll (è, j)may be
                        determined. Since the starting function Y l,ÿl (è, j) is normalized, each of the
                        spherical harmonics generated from equation (5.38a) will also be normalized.
                          We may readily derive a general expression for the spherical harmonic
                                                                            ^
                        Y lm (è, j) which results from the repeated application of L ‡ to Y l,ÿl (è, j). We
                        begin with equation (5.38a) with m set equal to ÿl
                                                            1
                                                                ^
                                                Y l,ÿl‡1 ˆ p  L ‡ Y l,ÿl             (5:46)
                                                            2l "
   147   148   149   150   151   152   153   154   155   156   157